
www.manaraa.com

 
Al al-Bayt University 

Computer Science Department 

Prince Hussein Bin Abdullah College for Information Technology 

 

Job Migration for 2D Mesh Multicomputers using Dynamic 

Compaction 

رافترحيل الأعمال في الحواسيب الشبكية ثنائية الأبعاد باستخدام التحشير عمى الأط  
 

By 
Amer Mamdooh Mtaw'a Al-mohaisen 

1120901004 

 

Supervisor: 
Dr. Saad Bani-Mohammad 

 

Co-supervisor: 

Prof. Ismail ababneh 

 
A Thesis Submitted to the Deanship of Graduate Studies in partial fulfillment of the 

requirements for the degree of Master of Computer Science 

Al al-Bayt University 

Mafraq, Jordan 

 

 

January 2016 



www.manaraa.com

            ii 

 

Table of Contents 

 
1. Introduction ………….……………………………………….…….............................. 1 

1.1. Introduction ….…………………………………….…………………..……………... 1 

1.2. Processor Allocation ………………………………………………………................. 4 

1.3. Motivation and Contribution ………………………………………………………… 5 

1.4. Outline of the Thesis …..………………………………………………………………. 7 

2. Background and preliminaries ……………………………………………………….. 8 

2.1. Related Work……………………………………………………………………....... 8 

2.1.1. First Fit (FF) and Best Fit (BF) strategies ………………………………….. 8 

2.1.2. Two-dimensional Buddy strategy (2D BUDDY) …………………………... 9 

2.1.3. Frame sliding strategy (FS) ……………………………………………….... 10 

2.1.4. Adaptive Scan strategy (AS) ……………………..……………………….... 11 

2.1.5. First-Fit Mesh Bifurcation (FFMB) strategy………………………………... 11 

2.1.6. Online Dynamic Compaction-Single Corner (ODC-SC) strategy………….. 12 

2.1.7. Online Dynamic Compaction-Four Corners (ODC-FC)………………….… 14 

2.1.8. Conditional Online Dynamic Compaction-Four Corners (CODC-FC)…….. 16 

2.1.9. Conditional Online Dynamic Compaction-Four Corners Quarter by Quarter 

strategies (CODC-FCQQ)……………………………………………………………... 

 

19 

2.2. The Simulation Tool (ProcSimity Simulator) ……………………………................ 21 

2.3. Summary ……………………………………………………………………………. 22 

3. Conditional Online Dynamic Compaction-Full Mesh ……………………….…….. 23 

3.1. Introduction ……………………………………………………….…............... 23 

3.2. Online Dynamic Compaction-Four Corners strategies …………………………….. 23 



www.manaraa.com

            iii 

 

3.2.1. Conditional Online Dynamic Compaction – Full mesh strategy…................ 24 

3.3. Performance Evaluation ……………………………………………………………. 25 

3.3.1. Simulation Results ………………………………………………………….. 25 

3.4. Conclusions …………………………………………………………........................ 63 

4. Conclusions and Future Work ……………………………………………………….. 63 

4.1. Summary of the Results …………………………………………………………….. 63 

4.2. Directions for the Future Work……………………………………………............... 

Summary in Arabic …………………………………………………………………………. 

63 

63 

5. References ……………………………………………………………………................ 04 

 



www.manaraa.com

            iv 

 

List of Figures 

Figure Figure name Page 

number 

Figure 1 Hypercube topology ……………………………………………… 2 

Figure 2 An example of a 4×4 2D mesh …………………………………... 3 

Figure 3 An allocation using the First Fit and Best Fit strategies ………... 9 

Figure 4 An allocation using the 2D Buddy strategy ……………………... 9 

Figure 5 An allocation using the Frame Sliding strategy ........................... 10 

Figure 6 An allocation using the Adaptive Scan strategy ……………....... 11 

Figure 7 An allocation using the First-Fit Mesh Bifurcation strategy …… 12 

Figure 8 An allocation using the Online Dynamic Compaction-Single 

Corner strategy ……………………………………………….….. 

13 

Figure 9 An allocation using the Online Dynamic Compaction-Four 

Corners strategy ………………………………………………….. 

15 

Figure 10 Outline of the allocation procedure for the CODC-FC strategy ... 17 

Figure 11 Outline of the de-allocation procedure for the CODC-FC 

strategy ………………………………………………………...…. 

17 

Figure 12 An allocation using the Conditional Online Dynamic 

Compaction-Four Corners strategy ………………………….......  

 

18 

Figure 13 An allocation and migration using the Online Dynamic 

Compaction-Four Corners strategy Quarter By Quarter ……..…. 

 

20 



www.manaraa.com

            v 

 

Figure 14 Average Turnaround Time vs System Load for an 8x8 mesh ...... 29 

Figure 15 Average Turnaround Time vs System Load for a 22x16 mesh .... 29 

Figure 16 Average Turnaround Time vs System Load for a 32x32 mesh .... 30 

Figure 17 Mean System Utilization vs System Load for an 8x8 mesh ……. 32 

Figure 18 Mean System Utilization vs System Load for a 22x16 mesh …... 32 

Figure 19 Mean System Utilization vs System Load for a 32x32 mesh …... 33 

Figure 20 Average Number of Migrations vs System Load for an 8x8 mesh  35 

Figure 21 Average Number of Migrations vs System Load for a 22x16 

mesh ……………………………………………………………… 

 

35 

Figure 22 Average Number of Migrations vs System Load for a 32x32 

mesh ……………………………………………………………… 

 

36 

 



www.manaraa.com

            vi 

 

List of Tables 

Table number Table name Page number 

Table 2.1 Drawbacks of some allocation and migration strategies 22 

Table 3.1 The System Parameters Used in the Simulation Experiments  26 

Table 3.2 Average turnaround time for the algorithms considered in 

this thesis ……………………………………………………... 28 

Table 3.3 Average system utilization for the algorithms considered in 

this thesis ……………………………………………………... 31 

Table 3.4 Average number of migrations for the algorithms considered 

in this thesis ………………………………………………….. 34 



www.manaraa.com

           
 vii 

 

Abstract 

  

The use of an efficient processor allocation algorithm is necessary to utilize the 

computational power of multicomputer systems. Processor allocation selects a set of 

processors to execute parallel jobs, processor allocation strategies can be divided into two 

main categories: contiguous and noncontiguous. 

In contiguous allocation, the selected set of processors must be joint. This strategy 

could lead to high processor fragmentation which degrades system performance in terms of, 

for example, the turnaround time and system utilization. 

Processor fragmentation can be of two types: internal and external. Many strategies 

have been devoted to reducing fragmentation; most of these strategies use dynamic 

allocation to solve this problem, for example migration, we will show the problems with the 

existing migration strategies such as non beneficial migration where the strategy migrate 

jobs but the freed sub-mesh is not suitable in size or shape for allocation. 

A new migratory scheme is proposed in this thesis to solve the fragmentation problem 

in the allocation strategies and as improvement to four previous schemes that uses dynamic 

contiguous allocation, which are Online Dynamic Compaction-Single Corner (ODC-SC), 

Online Dynamic Compaction-Four Corners(ODC-FC), Conditional Online Dynamic 

Compaction-Four Corners (CODC-FC), and Conditional Online Dynamic Compaction-

Four Corners Quarter By Quarter (CODC-FCQQ). This proposed scheme concentrates on 

expanding the search grid so that it contains the full mesh which increases the number of 

migrations. Also, migration is carried out only when it results in a successful allocation. In 
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addition, request orientation is switched if allocation fails for the original allocation request, 

so as to increase the probability of successful allocation. 

The performance analysis in this thesis indicates that the new proposed algorithm 

improves the performance in terms of average turnaround time substantially. Moreover, the 

system utilization is improved. 
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Chapter 1 

Introduction 

1.1 Introduction 

A parallel computer is a set of processors that cooperate with each other to solve 

computational problems. There are two types of parallel computer systems–proposed by 

Michael Flynn, 1966-: systems that operate under a single control unit (they are referred to 

as single instruction stream, multiple data stream (SIMD) systems), and systems in which 

each processing element is capable of executing a different program independently of the 

other processing elements (they are referred to as multiple instruction stream, multiple 

data stream (MIMD) systems) [19, 25, 30]. 

Multicomputer systems are MIMD systems that are very popular substitutes for 

supercomputers (such as IBM BlueGene in 2008 and Cray Titan in 2012). They use 

multiple interconnected inexpensive computers to form a supercomputing environment 

(such as Solaris MC in 1995, and Intel Xeon Phi in 2010). A multicomputer system helps 

in solving large-scale computational problems, provides concurrency in solving multiple 

problems at the same time, and overcomes memory constraints. 

There are many network topologies that are used in multicomputers. The nodes in 

these networks represent processors and the edges represent communication paths between 

the connected processors. Choosing between topologies is based on several criteria; an 

important criterion is the maximum value of the shortest path length between any two 

nodes, which is known as diameter. Another criterion is the number of links that connect a 

certain node to its neighbors, which is known as node degree [19, 22, 26, 33]. Examples of 
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these networks are the hypercube that is shown in Figure 1 and the 2D mesh that is shown 

in Figure 2. 

 

 

Figure 1: Hypercube topology 

One of the advantages of hypercube topology is its small diameter, but the major 

disadvantage of this type of networks is its degree, since the degree depends on the 

number of processors in the system which is in hypercube a power of two. A hypercube 

has 2
d
 processors, where d is the hypercube’s diameter and node degree. 

The mesh topology is a common topology in multicomputer systems because of 

several good characteristics, such as simplicity, scalability, structural regularity, and ease 

of implementation [2, 9, 22]. So, the 2D mesh topology is the target system in this thesis. 

The following definitions are used in this thesis [9, 22]. 

Definition 1.1 A two-dimensional (2D) mesh, M(W,H), contains W × H processors 

(or nodes), where W is the mesh width and H is the mesh height. A processor is 

represented by a pair of coordinates (x, y), where 0 ≤ x <W and 0 ≤ y < H. 
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Definition 1.2 A 2D mesh, M(W, H), can be partitioned into a number of sub-

meshes. A sub-mesh S(w, h) contains w×h processors, where 0 < w ≤W and 0 < h ≤ H. It 

is represented by the coordinates (x1, y1, x2, y2), where (x1, y1) is the lower left corner of 

the sub-mesh (base node), and (x2, y2) is the upper right corner (end node). 

Here, w = x2 – x1 +1 and h = y2 – y1 + 1. 

Definition 1.3 A sub-mesh is said to be a free sub-mesh if and only if all its 

processors are unallocated to any job, and it is an allocated sub-mesh if and only if all its 

processors are allocated to the same job. 

 

Figure 2: An example of a 4×4 2D mesh 

 

The mesh in Figure 2 is a 4 × 4 2D mesh. In this figure, the black circles represent 

allocated processors, while the white circles represent free processors. For example, ((0, 
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0), (2, 1)) represents the 3 × 2 allocated sub-mesh S1, where (0, 0) represents the 

coordinates of the base node of S1 and (2, 1) represents the coordinates of the end node of 

S1. The sub-mesh ((0, 2), (1, 3)) is the 2 × 2 free sub-mesh S2 with the base node (0, 2) 

and the end node (1, 3). 

 

1.2 Processor Allocation 

Processor allocation in a mesh multicomputer is defined as the selection of the set of 

processors to execute a specific job [13, 14]. There are many processor allocation 

strategies that have been suggested for 2D mesh connected multicomputers. They can be 

classified as: contiguous and non-contiguous. 

In contiguous allocation, a (contiguous) sub-mesh is reserved for a distinct job for 

the duration of its execution. The advantage expected from contiguous allocation is that 

there is no contention with the communication of other jobs in the interconnection 

network. On the other hand, there are some problems, such as the reduced chance of 

successful allocation although there is a sufficient number of free processors. This 

degrades system performance in terms of performance parameters such as job turnaround 

time (the time that the job spends in the system from from arrival to departure) and mean 

system utilization (percentage of processors allocated over time) [2, 4, 5, 16, 21, 25, 27, 

28, 34, 36, 38, 39,40,41]. 

In non-contiguous allocation, a job can execute on multiple separate smaller sub-

meshes rather than waiting until a single sub-mesh of the requested size and shape is 

available. The main disadvantage of non-contiguous allocation is the increase in message 
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contention inside the network, however dropping the contiguity condition can reduce 

processor fragmentation and increase system utilization [2, 4, 5, 16, 21, 25, 27, 28, 34]. 

Processor fragmentation can be internal fragmentation, which occurs when the 

number of processors allocated to a job is more than the number the job needs. This means 

that some extra processors are allocated but they are not used. Processor fragmentation can 

be external fragmentation, which occurs when there are free processors enough in number 

for allocation, but they are not allocated to a job because they are not contiguous or they 

do not have the shape that is requested by the allocation request. Fragmentation is the 

main limitation for the performance of contiguous allocation schemes that needs to be 

minimized. 

Contiguous allocation can be a good strategy despite of its drawbacks. This is 

because of its ability to minimize the distance of communication paths and avoiding 

interference among jobs. The drawbacks of contiguous allocation can be solved using 

dynamic allocation, where the sub-mesh of processors allocated to a job can be changed 

during job execution in order to achieve efficiency as opposed to static processor 

allocation, where a job is allocated a fixed sub-mesh of processors throughout its 

execution time [12]. To achieve dynamic allocation, we use job migration, which is 

defined as re-allocating jobs from their current position to another sub-mesh to produce 

large area of adjacent processors that can accommodate new incoming jobs [21], or the 

process of defragmentation which rearranges the nodes themselves. 

1.3 Motivation and Contribution 

In contiguous processor allocation, if allocation for a job request fails, the job will have to 

wait until a suitable free sub-mesh is available. Migration of executing jobs when 
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allocation fails can improve the performance of multicomputer systems in terms of 

parameters such as system utilization, job turnaround time, and number of migrations. As 

a result of migration, allocation to one or more waiting jobs may become successful. 

The previous migration strategies proposed in [21, 31] for 2D mesh multicomputers have 

several limitations such as: a large number of migrations is needed under heavy system 

loads and the sizes of free sub-meshes that result after migration are small as compared to 

the size of the mesh system, where allocating a large incoming jobs degrades system 

performance in terms of job turnaround time and system utilization as a result of the small 

freed sub-meshes. The study in [21] is an example of migration studies. The mesh system 

is subdivided into four quarters, and migration is attempted for the four quarters. The 

strategy migrates within the first quarter then it checks if allocation can be successful. If 

not then it migrates within the second quarter then checks for allocation. This process is 

repeated for the third and fourth quarters. Motivated by the above observations, we 

propose in this thesis a new migration process that differs from the earlier migration 

strategies in that it is based on considering migration in the system as a whole. This can be 

expected to give better performance as compared to the previous migration processes. The 

proposed migration process has a larger number of migrations than that in the CODC-FC 

strategy as an example, where in this strategy (which CODC-FCQQ is built upon) it uses 

four quarters and migrate jobs to the four corners at the same time, it results in more 

migrations with a bigger freed sub-mesh [21], and it can serve more jobs per migration 

cycle than that in [11], the proposed migration process migrate jobs to the bottom-left 

corner one at a time. Also, the proposed strategy modifies the allocation process by 
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switching the orientation of allocation requests when allocation fails for the initial request 

orientation. 

1.4 Outline of the Thesis 

The rest of the thesis is organized as follows. Chapter two reviews some allocation and 

migration strategies that have been proposed for 2D mesh-connected multicomputer 

systems. Also, it presents the tool of the study (ProcSimity Simulator) used in this thesis.  

Chapter three introduces a new migration process for 2D multicomputer system that 

is based on the first fit (FF) allocation strategy and presents the main features of this 

scheme. Moreover, it presents extensive simulation experiments that have been carried out 

to compare the performance of the proposed migration strategy against the existing 

migration strategies. 

Chapter four gives a summary of the main results and some directions for future 

research.
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Chapter Two 

Background and Preliminaries  

 

2-1 Related Work 

In this section, a brief description of some allocation and migration strategies that have 

been proposed for 2D mesh network is presented [4, 16, 18, 21, 27, 28, 34, 39]. 

 

2.1.1 First Fit (FF) and Best Fit (BF) strategies. 

These strategies depend on the idea of detecting the base node for a free sub-mesh that is 

large enough for the current allocation request, where a base node represents the lower-left 

corner of a free sub-mesh using two bit arrays (busy and coverage array). These arrays 

represent the status of the processors in terms of idle/busy processors, and the two 

strategies scan them from left to right to find base nodes of large enough free submeshes. 

The difference between BF and FF is that FF scans the two arrays for the first base node 

with enough free processors to allocate and use it, but BF uses the base node that has 

enough free processors and has the smallest area [9, 14, 39]. Figure 3 shows an illustration 

of the first fit and best fit strategies. 
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Figure 3: An allocation using First Fit and Best Fit strategies [14, 39] 

 

2.1.2 Two-dimensional Buddy strategy (2D BUDDY). 

It is a first-fit strategy but with the following conditions: the mesh must be a square with a 

power of two side lengths and allocation units are square sub-meshes. The 2D Buddy 

scheme suffers from severe internal fragmentation because a sub-mesh with dimensions 

that have i2  side length is always required. Also, it has significant external fragmentation 

[9, 22, 27]. Figure 4 shows an allocation using the 2D Buddy strategy. 

 

Figure 4:  An allocation using the 2D Buddy strategy [27] 
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2.1.3 Frame sliding strategy (FS). 

FS allocation strategy is a first-fit strategy. FS works with 2D meshes of all sizes and 

shapes. It allocates a free sub-mesh for the current allocation request by searching for a 

sub-mesh (frame) of processors large enough for the allocation request. The search method 

is done by searching horizontally from left to right and vertically from bottom to top and 

starts with the first free processor found at the bottom-left corner of the 2D mesh. The 

action for searching is done by sliding the frame horizontally and vertically by the width 

or the length of the allocation request [9, 16, 22]. This process is shown in Figure 5, where 

the first frame S1 is not as an appropriate frame for the allocation request because it is not 

free. The request is then moved horizontally by the width of the job request, which goes 

outside of the mesh. After that, the frame is moved vertically by the length of the job 

request, which also goes outside of the mesh. We notice that it ends without finding an 

appropriate frame although one exists. As shown by this example, FS strategy is not a 

complete recognition strategy. 

 

Figure 5: An allocation using the Frame Sliding strategy [16] 
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2.1.4 Adaptive Scan strategy (AS). 

AS is a first fit allocation strategy. This strategy is an improvement of the FS strategy and 

it is considered as a first-fit recognition complete strategy [18]. Adaptive scan uses a free 

sub-mesh detection and scanning operation instead of sliding operation; where the 

algorithm scans the mesh by a frame -the same size of the incoming job- and if the frame 

is not free then the frame strides to the next point it moves in a single step vertically, and it 

moves horizontally based on the allocated sub-mesh.  If the job cannot be accommodated 

in its original orientation, the orientation of the job is switched and allocation is re-

attempted for the new request shape. In figure 6, the orientation of the job is switched 

when allocation of the original job orientation fails.  

 

Figure 6: An allocation using the Adaptive Scan strategy [18] 

 

2.1.5 First-Fit Mesh Bifurcation (FFMB) strategy. 

The FFMB strategy tries to reduce the fragmentation problem that the first-fit allocation 

strategies suffer from by using different ways for detecting the base node of the allocated 

sub-mesh. When a job requests the allocation of a free sub-mesh, FFMB starts the search 

process from bottom-left corner or top-left corner of the mesh unlike first-fit strategies, 
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which always start the search at the bottom-left corner. Choosing between bottom-left 

corner and top-left corner depends on the status of the upper-half and lower-half of the 

mesh by starting the search with the less busier half [21]. Figure 7 shows the main 

advantage of FFMB, where the search starts from the top-left corner of the mesh instead of 

the bottom of the mesh. 

 

Figure 7: An allocation using First-Fit Mesh Bifurcation strategy [21] 

 

2.1.6 Online Dynamic Compaction-Single Corner (ODC-SC) strategy. 

The ODC-SC strategy was proposed to reduce the external fragmentation problem that 

contiguous processor allocation strategies suffer from. ODC-SC applies job migration on 

the running jobs to produce an area of adjacent free processors that is larger than that 

before migration in order to serve the current allocation request or future allocation 

requests. ODC-SC does not apply job migration unless the allocation strategy failed to 

serve the current allocation request in spite of the presence of a sufficient number of free 



www.manaraa.com

Chapter 2: Background and Preliminaries      13 

processers because these processors are not contiguous. After job migration, the allocation 

strategy is used again to search for a free sub-mesh and allocates it to the current 

allocation request if it is found. In ODC-SC, all the running jobs are migrated to the 

bottom-left corner of the mesh, which aims to produce large areas of adjacent processors 

in right and top of the mesh. In job migration, the left or bottom edge of the sub-mesh are 

checked whether they are free or not. Then, shifting the sub-mesh leftwards or downwards 

until it reaches the left or bottom of the mesh boundary or the right edges or top edges of 

other allocated sub-meshes [21]. In figure 8, the ODC-SC strategy migrates jobs in case of 

allocation failure to the bottom left corner in order to free enough sub-mesh for allocation. 

 

 

Figure 8: An allocation using Online Dynamic Compaction-Single Corner strategy [21] 
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- Drawbacks of ODC-SC 

It has high number of migrations, and migration is done even if it is not beneficial in 

allocation. 

 

2.1.7 Online Dynamic Compaction-Four Corners (ODC-FC) strategy. 

In this strategy, the system is divided into four equally parts (four quarters) and processors 

are allocated to an allocation request by any processor allocation strategy. The main 

advantage for this strategy is that migration occurs in different directions in order to 

reduce the number of migrations; this is an advantage over the previous migration strategy 

which is ODC-SC that uses migration on the whole mesh to the left bottom corner which 

results in a large number of migrations. At the same time, ODC-FC migrates jobs without 

any restrictions, which means that the probability of unnecessary migrations (migration 

that does not result in successful allocation) is high. 

If the number of requested processors is available and the allocation strategy fails to 

allocate a job request due to the lack of contiguity, then the job migration process is 

applied on the running jobs to migrate them into the four corners of the system according 

to the position of each running job, this migration leads to produce a large area of free 

adjacent processors in the middle of the system, then the allocation strategy is used again 

to allocate a free sub-mesh for the job request [21]. 

Figure 9 shows the migration scheme for ODC-FC where the jobs are migrated to 

the four corners, where each job is migrated to the corner corresponding to its location. 
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Figure 9: An allocation using Online Dynamic Compaction-Four Corners strategy [21] 

 

- Drawbacks of ODC-FC 

ODC-FC has high number of migrations than CODC-FC and CODC-FCQQ, and 

migration is done even if it is not beneficial in allocation. 
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2.1.8 Conditional Online Dynamic Compaction-Four Corners (CODC-FC) 

strategy. 

The CODC-FC strategy is a generalization of the ODC-FC strategy. In this strategy, the 

system is divided into four equal parts (four quarters) and processors are allocated to an 

allocation request by any processor allocation strategy chosen. If the number of requested 

processors is available and the allocation strategy fails to allocate a job request due to the 

lack of contiguity, then the job migration process is applied on the running jobs in order to 

migrate them to the four corners of the system according to the position of each running 

job. This migration aims to produce a large area of free adjacent processors in the middle 

of the system, and then the allocation strategy is used again to allocate a free sub-mesh for 

the job request [21]. 

In this strategy, the main advantage is the conditional migration, where the mesh is 

divided as in ODC-FC [21, 31] and the same allocation strategy is applied, but the 

migration is carried out if it results in successful allocation, this reduces the number of 

migrations and as a result the turnaround time is also reduced as opposed to the previous 

algorithms with migration. This is an advantage in comparison to ODC-SC and ODC-FC. 

The disadvantage of CODC-FC is that it applies migration to all quarters at the same 

time even if single quarter migration can be enough which mean higher number of 

migrations. Figures 10 and 11 show the outline of CODC-FC allocation and de-allocation 

strategies respectively. In figure 12, the job with size 3x3 failed to be allocated, so 

migration is carried out for the four quarters then it is allocated in the freed sub-mesh. 
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Input : Dimensions of the required sub-mesh of the job to be allocated 

Step1: Search (phase 1) 

Search for a free sub-mesh using (FF) strategy. 

 IF a free sub-mesh is found, go to Step 5. 

ELSE, check weather migration has been carried out since the last de-allocation. 

 IF migration has already been carried out, stop. 

 ELSE 

 IF the number of free processors in the 2D mesh is greater than or equal to the number of 

processors needed by the allocation request go to Step 2. 

ELSE stop. 

Step2: Migration Test 

Do the migration using a copy of the data structures (FF on the copy).IF the job migration 

can result in successful allocation for the current allocation request, go to Step3. ELSE stop. 

Step3: Migration 

Apply job migration for all allocated jobs to the four corners according to the location of 

each allocated job. THEN, go to Step4. 

Step4: search (phase 2) Search for a free sub-mesh using the FF strategy. Go to Step5. 

Step5: Allocation 

Allocate the free sub-mesh to the job. Update the lists and all data structures. Stop. 

Figure 10: Outline of the allocation procedure for CODC-FC strategy [21, 31] 

Input: job_id 

Step1:  

For all processors in the mesh network 

 If processor is allocated to the job 

 De-allocate it  

Step2: Update the lists 

Figure 11: Outline of the de-allocation procedure for CODC-FC strategy [21, 31] 
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Figure 12: An allocation using Conditional Online Dynamic Compaction-Four Corners 

strategy [21, 31] 

 

- Drawbacks of CODC-FC 

In CODC-FC migration is done in all quarters even if an enough free submesh to allocate 

is freed with fewer migrations. 
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2.1.9 Conditional Online Dynamic Compaction-Four Corners Quarter by 

Quarter strategies. 

The conditional online Dynamic Compaction-Four Corners Quarter by Quarter is based on 

ODC-FC except that it applies migration only when it can result in successful allocation 

for the current allocation request. In this migration strategy, we use the FF strategy as an 

allocation strategy because of its simplicity and performance is close to that of the BF 

strategy. The same job migration technique used in ODC-FC has been used in this 

strategy, but an improvement has been made to this strategy to improve the performance 

of ODC-FC in terms of average turnaround time and mean system utilization. The aim of 

this improvement is to reduce the cost of job migration. 

In CODC-FC strategy, we keep all jobs that are allocated to the 2D mesh in four 

ordered lists; each list contains the jobs that belong to the same quarter, which means that 

the first list contains all jobs that are allocated to the first quarter. The second list contains 

all jobs that are allocated to the second quarter, and so on. After a job completes its 

execution and deallocation is carried out, the job is removed from the list that it belongs 

to. These lists are used to simplify the migration process [31]. 

In this scheme, the migration process is similar as CODC-FC but migration takes 

place on quarter-by-quarter bases. When the current allocation request fails, migration 

within the first quarter is carried out and if this does not lead to successful allocation, we 

cancel the operation and return the mesh to the previous state. Then we try to migrate 

within the second quarter, and so on. If migration within a quarter leads to successful 

allocation, we keep the migration state, this process of migration is called virtual 

migration; where the migration is applied on a copy of the busy array that contains the 
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location of the current allocated jobs, the virtual migration minimizes the number of 

migration which results in reduced turnaround time. 

The accumulative migration process means that in the worst case scenario CODC-

FCQQ will give the same results as CODC-FC. Using virtual migration may cause an 

increase in time of service but it is balanced in or even decreased as the cumulative 

migration have a better chance in giving a better result than CODC-FC [31]. 

Figure 13 shows the process of migration to the four corners on quarter-by-quarter 

basis, where the migration process starts in the first corner and then the second corner, and 

so on. 

Figure 13: An allocation and migration using Online Dynamic Compaction-Four Corners 

strategy Quarter By Quarter [31] 
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- Drawbacks of CODC-FCQQ 

In CODC-FCQQ migration can fail even if there is enough free nodes because of the 

shape of the incoming job don’t match the shape of the freed sub-mesh. 

 

2.2 The Simulation Tool (ProcSimity Simulator) 

This section briefly describes the ProcSimity simulation tool [25, 32]. ProcSimity is a 

simulation tool that has been built as a research tool for processor allocation and job 

scheduling in multicomputer systems [32, 10]. ProcSimity was developed at the 

University of Oregon [32], and has been supported by Oregon Advanced Computing 

Institute (OACIS) and National Science Foundation (NSF) [10]. The tool was written in 

the C programming language and has been extensively used in the simulation of processor 

allocation and job scheduling in mesh-connected multicomputer systems [8, 10, 29]. This 

is because it is an open-source tool that includes detailed simulations of important 

operations regarding multicomputer networks [10, 32]. 

The general purpose of the ProcSimity is to provide a suitable environment for 

performance analysis of processor allocation and scheduling for different algorithms. In 

particular, ProcSimity’s main job is to examine some of the processor allocation problems, 

as an example of fragmentation and communication overhead problems [2, 5, 7, 8, 10, 29]. 

ProcSimity has an architecture that consists of a network of processors interconnected 

through message routers at each node. Adjacent nodes are connected by two-way 

communication links, and communications such as messages may be passed using by 

either store-and-forward or wormhole switching. ProcSimity supports the mesh and k-ary 

n-cube interconnection topologies with dimension-ordered routing [10, 32].The 
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ProcSimity simulator has a number of preset algorithms regarding allocation and 

scheduling. Moreover, a new algorithm can be integrated into ProcSimity [10, 32].  

2.3 Summary 

In table 2.1 a comparison is illustrating the main problems of the allocation and migration 

strategies mentioned in the previous sections. 

Table 2.1 Drawbacks of some allocation and migration strategies 

strategy Main advantage Main drawback 

First fit Simplicity External fragmentation 

Best fit Good performance External fragmentation 

Two-dimensional Buddy  Less time than FF internal fragmentation 

Frame sliding Faster search External fragmentation 

Adaptive scan Better performance than 

FS 

External fragmentation 

First-Fit Mesh Bifurcation Less fragmentation than 

FF 

External fragmentation 

Online Dynamic Compaction-Single Corner Improves utilization Non beneficial migration 

Online Dynamic Compaction-Four Corners Better performance than 

ODC-SC 

Non beneficial migration 

Conditional Online Dynamic Compaction-

Four Corners 

Better performance than 

ODC-FC 

Unnecessary migration 

Conditional Online Dynamic Compaction-

Four Corners Quarter by Quarter 

Better performance than 

CODC-FC 

External fragmentation 

because of the shape of 

the incoming job 
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Chapter Three 

Conditional Online Dynamic Compaction - Full Mesh 

 

3.1 Introduction 

In most contiguous processor allocation strategies, the main drawback is the fragmentation 

problem, especially external fragmentation. This happens when an allocation request 

cannot be served in spite of the presence of enough free processes for the job request, but 

because of the contiguity condition the available non-contiguous processors cannot be 

utilized, also the shape of the incoming job doesn’t match the shape of the free submesh 

[21]. 

To solve this problem, we can rearrange the allocated processors in the mesh to free 

enough adjacent processors to be able to allocate the requested processors. This process is 

referred to as the migration process. The main drawback in migration is the cost of 

migration because jobs must halt execution until the migration process ends and then re-

execute the processes either from the previous state, which means that the previous state 

should be saved. This results in an extra cost. 

 

3.2 Online Dynamic Compaction-Four Corners strategies 

The most recent migration strategies depend on using First Fit as an allocation strategy 

then use migration if allocation fails and there are enough free processors to allocate 

because of its simplicity and performance is close to that of the Best Fit strategy, so 

migration is applied on the running jobs to free a sub-mesh to be allocated to an incoming 
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job request. The most recent migration strategies divide the mesh into four quarters of the 

same size and migrates jobs within the quarter in a specific direction. As mentioned in 

sections 2.1.7, 2.1.8, and 2.1.9 in chapter 2. 

 

3.2.1 Conditional Online Dynamic Compaction – Full mesh strategy 

This strategy is based on the ODC strategies; ODC-SC and CODC-FCQQ strategies. This 

strategy uses the full mesh as ODC-SC to migrate jobs to the left bottom corner, it uses 

First Fit as an allocation strategy because of its simplicity and performance and also it uses 

the virtual migration process that is presented in CODC-FCQQ. 

The performance of this strategy can be improved over CODC-FCQQ by switching 

the orientation of any allocation request that cannot be allocated in the requested 

orientation. This step has been used in the algorithm in case that the migration was 

unsuccessful in allocation, then the algorithm rotates the allocation request and then 

checks if allocation is successful; it almost like the game of Tetris, which in most cases 

works very well. This causes a big reduction in turnaround time and the number of 

migrations that is maximized because of the full mesh migration. 

Also, the ordering process can be used to improve the performance of the allocation 

algorithm,  which is the process of updating the busy array that contains the current 

location of the currently being serviced jobs; every time we migrate the job in order to 

reduce the gaps between the migrated jobs; the gaps are caused by the process of 

migration; as the current migration for any job is done in relative to the old location of the 

previous job, this process reduces the gaps and which in turn helps in the next migration, 
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while the other algorithms update busy array when the algorithm finishes migration on the 

quarter or the full mesh system. 

 

3.3 Performance Evaluation 

In this section, the simulation results will be stated as an evaluation of the performance of 

the algorithm then it is compared to that of the most recent algorithms, CODC-FC and 

CODC-FCQQ. Since the performance of CODC-FC and CODC-FCQQ is better than that 

of ODC-FC and ODC-SC in terms of mean system utilization and job turnaround time, 

only these two strategies will be used in the comparison.    

 

3.3.1 Simulation Results 

Extensive simulations have been done in the ProcSimity simulation tool (which is written 

in C language and often used to simulate parallel systems) to compare the proposed 

algorithm against the selected algorithms; which are CODC-FC and CODC-FCQQ, all 

algorithms where implemented in this tool and tested. 

The mesh used is a 2D mesh with height (H) and width (W). We use the scheduling 

strategy First Come First Served (FCFS) because of its fairness, an exponential 

distribution has been used to generate inter-arrival time using a unique time unit and also 

is used to generate the jobs execution times with a mean of one time unit. The time unit 

used in simulations is specific for the simulator and not a normal time unit such as; 

seconds, minutes, and hours. The time unit is measured by floating point values, which 

means that the values generated by the simulator are real numbers. The job distribution is 
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uniformly distributed ranging from 1 to the mesh width and height and this controls the 

size of incoming jobs. 

Table 3.1 shows an example of one of the input files used in the evaluation experiments 

using a 16x16 mesh, values may vary to simulate different situations and traffic 

conditions. 

Table 3.1: The System Parameters Used in the Simulation Experiments. 

Simulator Parameter Values 

Dimensions of the Mesh Architecture 16×16 

Allocation Strategy FF 

Scheduling Strategy FCFS 

Job Size Distribution Uniform: Job widths and heights are uniformly 

distributed over the range from 1 to the mesh 

side lengths.  

Execution Time Distribution Exponential with a mean of one time unit. 

Inter-arrival Time Exponential with different values for the mean. 

The values are determined through 

experimentation with the simulator, ranged from 

lower values to higher values. 

Number of Runs The number of runs should be enough so that 

the confidence level is 95% that relative errors 

are below 5% of the means. The number of runs 

ranged from dozens to thousands. 

Number of Jobs per Run 1000 
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The last two inputs in the file above is the number of jobs and the number of runs and 

these two parameters are used to determine the confidence level of the simulation, the 

simulation experiments have been conducted with a confidence level of 95% with a 5% 

relative error below the means of the simulation results. There are three evaluation metrics 

which shows the performance of the algorithms considered in this thesis. These are job 

turnaround time – which is the time that a job spends in the system (mesh) from arrival to 

departure-, utilization – which is the percentage of utilized processors over time, and 

number of migrations- which is the number of movements that the jobs takes in the 

process of migration-. 

The main variable that is independent and imperative in the simulation process is the 

system load, which is the inverse of the mean inter-arrival time of the jobs. The system 

load is the value that determines the degree of load on the system which could be low, 

medium or heavy, this rang is crucial to test the best values for the evaluation metrics 

tested. The figures listed below show a comparison between the considered algorithms and 

composed of a system load on x-axis and the metric of performance on the y-axis. 

Turnaround Time 

In Figures 14, 15 and 16, the job turnaround time for multiple algorithms against system 

load shows how fast the algorithm processes a job. The main algorithm in this thesis 

(CODC-FM) and the one (CODC-FCQQ) that is compared with it uses FF as an allocation 

strategy and use virtual migration. The results show that the proposed algorithm CODC-FM 

is superior to all of the algorithms that are included in the figure. Moreover, the algorithm 

CODC-FCQQ is almost identical in performance to the previous algorithm CODC-FC and 

they are superior to the previous algorithms whether they use migration or not, while the 
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proposed algorithm CODC-FM performs better than the previous algorithms considered. 

When comparing CODC-FCQQ with our proposed algorithm CODC-FM In table 3.2, the 

table demonstrates the values included in the figures below; in which the lower value is 

considered as an advantage, so  we see a value of (25.448994) at (2.1) system load of the 

CODC-FM algorithm against (57.946968) for the closest algorithm which is CODC-FCQQ 

at the same system load for an 8X8 mesh In figure 14, also a value of (26.65143) against 

(42.097273) in favor of CODC-FM for a 22X16 mesh In figure 15, and a value of 

(13.42729) against (37.244583) in favor of CODC-FM for a 32X32 mesh In figure 16. The 

formula used to calculate the values in the table is listed below. 

Formula 1 :  response time  = response time + (average response time /no. of runs)  

Table 3.2: average turnaround time for the algorithms considered in this thesis 

compared to other algorithms. 

System load ODC-FC FF CODC-FCQQ CODC-FM 

0.1 1.079001 1.030232 1.03208 1.023223 

0.3 1.272198 1.11385 1.126135 1.099058 

0.5 1.518925 1.240075 1.265202 1.211681 

0.7 1.830567 1.430026 1.461612 1.366162 

0.9 2.239858 1.733065 1.744113 1.5733 

1.1 2.807414 2.24741 2.17395 1.862186 

1.3 3.686752 3.307573 2.908342 2.276927 

1.5 5.406547 6.212885 4.474857 2.934021 

1.7 9.776795 15.678181 8.702282 4.152281 

1.9 20.927063 35.124291 19.760804 6.941841 

2.1 38.423574 56.880197 37.244583 13.42729 
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Figure 14: Average Turnaround Time vs System Load for a 8X8 mesh 

 

Figure 15: Average Turnaround Time vs System Load for a 22X16 mesh 
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Figure 16: Average Turnaround Time vs System Load for a 32X32 mesh 

 

Utilization 

In figures 17, 18 and 19, utilization for multiple algorithms against system load shows how 

the algorithm utilizes processors. When we compare our proposed algorithm CODC-FM 

against the previous algorithms (CODC-FCQQ as an example), CODC-FM achieves higher 

utilization. CODC-FCQQ is better in performance comparing to the previous algorithms 

because of cumulative migration. This causes fewer migrations which in part maximizes 

utilization since utilization depends on job service time and the cost of migration. The 

reason that makes CODC-FM performs better in utilization than CODC-FCQQ is the job 

orientation switch which reduces job migration since in some cases allocation is done 

without migration. In figures 17, 18, and 19, we compare the system utilization for different 

algorithms with different mesh sizes. As an example, when comparing CODC-FCQQ with 

CODC-FM- the data in table 3.3, which shows some values included in the charts below; 
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where the higher value is considered as an advantage, therefore we see a value of 

(0.609426) for CODC-FM against (0.538851) for CODC-FCQQ in favor of CODC-FM for 

an 8X8 mesh with a (2.1) system load In figure 17, also a value of (0.532494) against 

(0.501032) in favor of CODC-FM for a 22X16 mesh In figure 18, and a value of 

(0.538343) against (0.488739) in favor of CODC-FM for a 32X32 mesh In figure 19. The 

formula used to calculate the values in the table is listed below. 

Formula 2:  system utilization = system utilization + (run system utilization / no. of runs) 

Table 3.3: average system utilization for the algorithms considered in this thesis 

compared to other algorithms. 

System load ODC-FC FF CODC-FC CODC-FCQQ CODC-FM 

0.1 0.031767 0.031767 0.031767 0.031767 0.031767 

0.3 0.095277 0.095277 0.095277 0.095277 0.095277 

0.5 0.158745 0.158743 0.158745 0.158745 0.162634 

0.7 0.222145 0.222138 0.222145 0.222145 0.222159 

0.9 0.28542 0.285394 0.28542 0.28542 0.285481 

1.1 0.348447 0.348352 0.348445 0.348445 0.348647 

1.3 0.410932 0.410616 0.410934 0.410936 0.411542 

1.5 0.471209 0.468314 0.471202 0.47122 0.47387 

1.7 0.517484 0.501934 0.517441 0.517546 0.534107 

1.9 0.535067 0.509731 0.535025 0.535207 0.583855 

2.1 0.538674 0.511529 0.538629 0.538851 0.609426 
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Figure 17: Mean System Utilization vs System Load for a 8X8 mesh 

 

Figure 18: Mean System Utilization vs System Load for a 22X16 mesh 
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Figure 19: Mean System Utilization vs System Load for a 32X32 mesh 

Migration 

Figures 20, 21 and 22, Show the average number of migration for multiple algorithms 

against system load. When we compare against the algorithm in this thesis we see that 

CODC-FM is only superior to ODC-FC.  The reason that CODC-FM has higher in 

number of migrations is the use of the full mesh system as a migration area, causing higher 

migrations which in part minimize utilization since utilization depends on job turnaround 

time and the cost of migration. But since migration is carried out in case of failure of 

allocation the effect is negligible, also the algorithm in this thesis has a step that should be 

taken before the migration process which is the orientation switch that may substitute the 

migration process if it is successful. Also the use of the full mesh in migration can produce 

a large free sub-mesh that can accommodate more jobs to be serviced, and the ordering 

process helps with the size of the freed sub-mesh. 
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 In Figures 20, 21, and 22, we compare the number of migrations for the different 

algorithms. When comparing CODC-FCQQ with CODC-FM as an example, table 3.5 

shows some values included in the charts below; the higher value is considered as a 

disadvantage-  we see a value of (111.45) for CODC-FM against a value of (75.21) for 

CODC-FCQQ for an 8X8 mesh as with a (2.1) system load In figure 20, also a value of 

(129.3225) against (102.335) in favor of CODC-FCQQ for a 22X16 mesh In figure 21, 

and a value of (169.56) against (114.27) in favor of CODC-FCQQ for a 32X32 mesh In 

figure 22. The formula used to calculate the values in the table is listed below. 

Formula 3: migration counter = migration counter + migration counter per run / no. of runs 

Table 3.4: average number of migrations for the algorithms considered in this thesis 

compared to other algorithms. 

System load ODC-FC FF CODC-FC CODC-FCQQ CODC-FM 

0.1 9.1125 0 0.5025 0.5025 0.7475 

0.3 33.3225 0 3.81 3.7675 5.4225 

0.5 63.4775 0 9.375 9.2725 12.7375 

0.7 100.035 0 16.95 16.615 22.655 

0.9 141.725 0 25.835 25.1925 33.3125 

1.1 190.5925 0 36.6575 35.49 45.8275 

1.3 244.19 0 48.6225 47.095 59.6225 

1.5 300.2875 0 61.405 59.405 74.805 

1.7 347.345 0 72.5175 70.0175 90.615 

1.9 366.17 0 76.865 74.1925 104.27 

2.1 370.2225 0 77.905 75.21 111.45 
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Figure 20: Average Number of Migrations vs System Load for a 8X8 mesh 

 

 

Figure 21: Average Number of Migrations vs System Load for a 22X16 mesh 
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Figure 22: Average Number of Migrations vs System Load for a 32X32 mesh 

 

3.4 Conclusions  

While different migration strategies improve the performance of most allocation strategies 

in different ways, the suggested algorithm Conditional Online Dynamic Compaction-Full 

Mesh with switch (CODC-FM for short), is an improvement of the previous algorithms as 

shown by the simulation results, the performance of CODC-FM is better in job turnaround 

time and mean system utilization, although it has a higher number of migrations than most 

of the previous algorithms, CODC-FM balance the effect of the high number of migrations 

with lower job turnaround time since it reduces service time a great deal. 

The most promising update in the algorithm which improved the performance is job 

orientation switch. CODC-FM has the best performance and the best sides of further 

improvement such as the migration area. 
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Chapter 4 

Conclusions and Future Work 

 

4.1 Summary of the Results 

The main purpose of this thesis is to come up with a new and improved migration strategy 

for 2D mesh-connected multicomputer systems, below are some areas of improvement 

that the new strategy accomplished. 

 The improvements of the previous algorithms shows that improvement can be 

done in some areas, this is the motivation for a new migrations strategy that has 

higher performance than the previous ones. Most migration strategies have a close 

in job turnaround time. In addition, utilization of processors is an important issue. 

The new migration strategy CODC-FM depends on using the full mesh as a 

migration area and the most important criteria is that in case of migration failure to 

allocate a job it switch the orientation (i.e., rotation) of the allocation request, 

which is expected to improve the system performance.  

 The simulation has shown that the performance of CODC-FM is better than that of 

the previous migration strategies. The proposed algorithm is better than that of the 

previous algorithms with up to 177% improvement in terms of job turnaround time 

in high system loads and with an average of 54% overall system loads. Also, the 

results show an increase in system utilization up to 9.2% in high system loads with 

an average of 4.6% overall system loads. Moreover, the results show that an 
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increase in the number of migrations by 30% overall system loads which have little 

effect on the overall performance of the new algorithm because of the 

improvement in the different aspects of the algorithm. 

 

4.2 Directions for the Future Work 

Many areas of this research work are open for improvement, where the problems that can 

be investigated are mentioned below. 

 It would be interesting to change the way of dividing the mesh system and then 

evaluate the performance of the allocation strategies in such way. 

 The job orientation (i.e., job rotation) is done after migration fails to allocate. 

Therefore, we can change the first fit algorithm to use job orientation within the 

algorithm or after the initial allocation fails to allocate the job. 
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 الملخص

 

جديدة لترحيل المهام اثناء تنفيذها في النظام بهدف التحسين في  تم في هذه الرسالة اقتراح خوارزمية

يتم التركيز في .  مقارنة مع الخوارزميات القديمة المستخدمة لترحيل المهام اثناء التنفيذ، أداء النظام

 ،شمل الشبكة كاملة مما يزيد من عمليات الترحيلتعلى توسيع منطقة البحث لالخوارزمية المقترحة 

الترحيل يتم تنفيذ السابقة. وأيضاً،  الطرقفي  منهان ذلك أن تصبح المنطقة المفرغة أكبر الهدف مو

هذا يعني تجنب العمليات الغير مفيدة. بالإضافة الى ذلك، في و ،فقط عندما ينتج عنه تخصيص ناجح

 ،حال فشل التخصيص للطلب يتم تبديل ابعاد هذا الطلب، وذلك لزيادة احتمل التخصيص الناجح

من مساحة البحث عن طريق  التقليل وهناك ايضاً خاصية أخرى مهمة لطريقة الترحيل المقترحة وهي

ايقاف عملية البحث عند ايجاد شبكة جزئية كبيرة بما يكفي للتخصيص الناجح مما يجعل الترحيل يتم 

 .)تحديث عملية الترحيل بشكل تراكمي بعد كل مهمة( تراكمي على اساس

الخوارزمية الجديده المقترحة تحسن من الأداء من ناحية معدل  هذه الرسالة الى انتشير النتائج في 

كما تحسن من استغلال النظام مقارنة  ،( بشكل كبيرturnaround time)  المكوث في النظاموقت 

 بالخوارزميات السابقة.

ن الترحيل يتم عدد مرات الترحيل لأتعاني الخوارزمية الجديدة من مشكلة واحدة فقط وهي زيادة  

في الشبكة كاملة وجميعها ترحل لنفس الإتجاه وهو الزاوية  البرامج قيد التنفيذتنفيذه على جميع 

على  ، هذه العملية تتسبب بزيادة عدد مرات الحركة التي تنفذ على الوظيفةللشبكة اليسرى السفليه

 .على حده كل امج قيد التنفيذالبرالرغم من أن الترحيل يتم على 
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