
www.manaraa.com

Al al-Bayt University

Computer Science Department

Prince Hussein Bin Abdullah College for Information Technology

Job Migration for 2D Mesh Multicomputers using Dynamic

Compaction

رافترحيل الأعمال في الحواسيب الشبكية ثنائية الأبعاد باستخدام التحشير عمى الأط

By
Amer Mamdooh Mtaw'a Al-mohaisen

1120901004

Supervisor:
Dr. Saad Bani-Mohammad

Co-supervisor:

Prof. Ismail ababneh

A Thesis Submitted to the Deanship of Graduate Studies in partial fulfillment of the

requirements for the degree of Master of Computer Science

Al al-Bayt University

Mafraq, Jordan

January 2016

www.manaraa.com

 ii

Table of Contents

1. Introduction ………….……………………………………….…….............................. 1

1.1. Introduction ….…………………………………….…………………..……………... 1

1.2. Processor Allocation ………………………………………………………................. 4

1.3. Motivation and Contribution ………………………………………………………… 5

1.4. Outline of the Thesis …..………………………………………………………………. 7

2. Background and preliminaries ……………………………………………………….. 8

2.1. Related Work……………………………………………………………………....... 8

2.1.1. First Fit (FF) and Best Fit (BF) strategies ………………………………….. 8

2.1.2. Two-dimensional Buddy strategy (2D BUDDY) …………………………... 9

2.1.3. Frame sliding strategy (FS) ……………………………………………….... 10

2.1.4. Adaptive Scan strategy (AS) ……………………..……………………….... 11

2.1.5. First-Fit Mesh Bifurcation (FFMB) strategy………………………………... 11

2.1.6. Online Dynamic Compaction-Single Corner (ODC-SC) strategy………….. 12

2.1.7. Online Dynamic Compaction-Four Corners (ODC-FC)………………….… 14

2.1.8. Conditional Online Dynamic Compaction-Four Corners (CODC-FC)…….. 16

2.1.9. Conditional Online Dynamic Compaction-Four Corners Quarter by Quarter

strategies (CODC-FCQQ)……………………………………………………………...

19

2.2. The Simulation Tool (ProcSimity Simulator) ……………………………................ 21

2.3. Summary ……………………………………………………………………………. 22

3. Conditional Online Dynamic Compaction-Full Mesh ……………………….…….. 23

3.1. Introduction ……………………………………………………….…............... 23

3.2. Online Dynamic Compaction-Four Corners strategies …………………………….. 23

www.manaraa.com

 iii

3.2.1. Conditional Online Dynamic Compaction – Full mesh strategy…................ 24

3.3. Performance Evaluation ……………………………………………………………. 25

3.3.1. Simulation Results ………………………………………………………….. 25

3.4. Conclusions …………………………………………………………........................ 63

4. Conclusions and Future Work ……………………………………………………….. 63

4.1. Summary of the Results …………………………………………………………….. 63

4.2. Directions for the Future Work……………………………………………...............

Summary in Arabic ………………………………………………………………………….

63

63

5. References ……………………………………………………………………................ 04

www.manaraa.com

 iv

List of Figures

Figure Figure name Page

number

Figure 1 Hypercube topology ……………………………………………… 2

Figure 2 An example of a 4×4 2D mesh …………………………………... 3

Figure 3 An allocation using the First Fit and Best Fit strategies ………... 9

Figure 4 An allocation using the 2D Buddy strategy ……………………... 9

Figure 5 An allocation using the Frame Sliding strategy 10

Figure 6 An allocation using the Adaptive Scan strategy ……………....... 11

Figure 7 An allocation using the First-Fit Mesh Bifurcation strategy …… 12

Figure 8 An allocation using the Online Dynamic Compaction-Single

Corner strategy ……………………………………………….…..

13

Figure 9 An allocation using the Online Dynamic Compaction-Four

Corners strategy …………………………………………………..

15

Figure 10 Outline of the allocation procedure for the CODC-FC strategy ... 17

Figure 11 Outline of the de-allocation procedure for the CODC-FC

strategy ………………………………………………………...….

17

Figure 12 An allocation using the Conditional Online Dynamic

Compaction-Four Corners strategy ………………………….......

18

Figure 13 An allocation and migration using the Online Dynamic

Compaction-Four Corners strategy Quarter By Quarter ……..….

20

www.manaraa.com

 v

Figure 14 Average Turnaround Time vs System Load for an 8x8 mesh 29

Figure 15 Average Turnaround Time vs System Load for a 22x16 mesh 29

Figure 16 Average Turnaround Time vs System Load for a 32x32 mesh 30

Figure 17 Mean System Utilization vs System Load for an 8x8 mesh ……. 32

Figure 18 Mean System Utilization vs System Load for a 22x16 mesh …... 32

Figure 19 Mean System Utilization vs System Load for a 32x32 mesh …... 33

Figure 20 Average Number of Migrations vs System Load for an 8x8 mesh 35

Figure 21 Average Number of Migrations vs System Load for a 22x16

mesh ………………………………………………………………

35

Figure 22 Average Number of Migrations vs System Load for a 32x32

mesh ………………………………………………………………

36

www.manaraa.com

 vi

List of Tables

Table number Table name Page number

Table 2.1 Drawbacks of some allocation and migration strategies 22

Table 3.1 The System Parameters Used in the Simulation Experiments 26

Table 3.2 Average turnaround time for the algorithms considered in

this thesis ……………………………………………………... 28

Table 3.3 Average system utilization for the algorithms considered in

this thesis ……………………………………………………... 31

Table 3.4 Average number of migrations for the algorithms considered

in this thesis ………………………………………………….. 34

www.manaraa.com

 vii

Abstract

The use of an efficient processor allocation algorithm is necessary to utilize the

computational power of multicomputer systems. Processor allocation selects a set of

processors to execute parallel jobs, processor allocation strategies can be divided into two

main categories: contiguous and noncontiguous.

In contiguous allocation, the selected set of processors must be joint. This strategy

could lead to high processor fragmentation which degrades system performance in terms of,

for example, the turnaround time and system utilization.

Processor fragmentation can be of two types: internal and external. Many strategies

have been devoted to reducing fragmentation; most of these strategies use dynamic

allocation to solve this problem, for example migration, we will show the problems with the

existing migration strategies such as non beneficial migration where the strategy migrate

jobs but the freed sub-mesh is not suitable in size or shape for allocation.

A new migratory scheme is proposed in this thesis to solve the fragmentation problem

in the allocation strategies and as improvement to four previous schemes that uses dynamic

contiguous allocation, which are Online Dynamic Compaction-Single Corner (ODC-SC),

Online Dynamic Compaction-Four Corners(ODC-FC), Conditional Online Dynamic

Compaction-Four Corners (CODC-FC), and Conditional Online Dynamic Compaction-

Four Corners Quarter By Quarter (CODC-FCQQ). This proposed scheme concentrates on

expanding the search grid so that it contains the full mesh which increases the number of

migrations. Also, migration is carried out only when it results in a successful allocation. In

www.manaraa.com

 viii

addition, request orientation is switched if allocation fails for the original allocation request,

so as to increase the probability of successful allocation.

The performance analysis in this thesis indicates that the new proposed algorithm

improves the performance in terms of average turnaround time substantially. Moreover, the

system utilization is improved.

www.manaraa.com

Chapter 1: Introduction 1

Chapter 1

Introduction

1.1 Introduction

A parallel computer is a set of processors that cooperate with each other to solve

computational problems. There are two types of parallel computer systems–proposed by

Michael Flynn, 1966-: systems that operate under a single control unit (they are referred to

as single instruction stream, multiple data stream (SIMD) systems), and systems in which

each processing element is capable of executing a different program independently of the

other processing elements (they are referred to as multiple instruction stream, multiple

data stream (MIMD) systems) [19, 25, 30].

Multicomputer systems are MIMD systems that are very popular substitutes for

supercomputers (such as IBM BlueGene in 2008 and Cray Titan in 2012). They use

multiple interconnected inexpensive computers to form a supercomputing environment

(such as Solaris MC in 1995, and Intel Xeon Phi in 2010). A multicomputer system helps

in solving large-scale computational problems, provides concurrency in solving multiple

problems at the same time, and overcomes memory constraints.

There are many network topologies that are used in multicomputers. The nodes in

these networks represent processors and the edges represent communication paths between

the connected processors. Choosing between topologies is based on several criteria; an

important criterion is the maximum value of the shortest path length between any two

nodes, which is known as diameter. Another criterion is the number of links that connect a

certain node to its neighbors, which is known as node degree [19, 22, 26, 33]. Examples of

www.manaraa.com

Chapter 1: Introduction 2

these networks are the hypercube that is shown in Figure 1 and the 2D mesh that is shown

in Figure 2.

Figure 1: Hypercube topology

One of the advantages of hypercube topology is its small diameter, but the major

disadvantage of this type of networks is its degree, since the degree depends on the

number of processors in the system which is in hypercube a power of two. A hypercube

has 2
d
 processors, where d is the hypercube’s diameter and node degree.

The mesh topology is a common topology in multicomputer systems because of

several good characteristics, such as simplicity, scalability, structural regularity, and ease

of implementation [2, 9, 22]. So, the 2D mesh topology is the target system in this thesis.

The following definitions are used in this thesis [9, 22].

Definition 1.1 A two-dimensional (2D) mesh, M(W,H), contains W × H processors

(or nodes), where W is the mesh width and H is the mesh height. A processor is

represented by a pair of coordinates (x, y), where 0 ≤ x <W and 0 ≤ y < H.

www.manaraa.com

Chapter 1: Introduction 3

Definition 1.2 A 2D mesh, M(W, H), can be partitioned into a number of sub-

meshes. A sub-mesh S(w, h) contains w×h processors, where 0 < w ≤W and 0 < h ≤ H. It

is represented by the coordinates (x1, y1, x2, y2), where (x1, y1) is the lower left corner of

the sub-mesh (base node), and (x2, y2) is the upper right corner (end node).

Here, w = x2 – x1 +1 and h = y2 – y1 + 1.

Definition 1.3 A sub-mesh is said to be a free sub-mesh if and only if all its

processors are unallocated to any job, and it is an allocated sub-mesh if and only if all its

processors are allocated to the same job.

Figure 2: An example of a 4×4 2D mesh

The mesh in Figure 2 is a 4 × 4 2D mesh. In this figure, the black circles represent

allocated processors, while the white circles represent free processors. For example, ((0,

www.manaraa.com

Chapter 1: Introduction 4

0), (2, 1)) represents the 3 × 2 allocated sub-mesh S1, where (0, 0) represents the

coordinates of the base node of S1 and (2, 1) represents the coordinates of the end node of

S1. The sub-mesh ((0, 2), (1, 3)) is the 2 × 2 free sub-mesh S2 with the base node (0, 2)

and the end node (1, 3).

1.2 Processor Allocation

Processor allocation in a mesh multicomputer is defined as the selection of the set of

processors to execute a specific job [13, 14]. There are many processor allocation

strategies that have been suggested for 2D mesh connected multicomputers. They can be

classified as: contiguous and non-contiguous.

In contiguous allocation, a (contiguous) sub-mesh is reserved for a distinct job for

the duration of its execution. The advantage expected from contiguous allocation is that

there is no contention with the communication of other jobs in the interconnection

network. On the other hand, there are some problems, such as the reduced chance of

successful allocation although there is a sufficient number of free processors. This

degrades system performance in terms of performance parameters such as job turnaround

time (the time that the job spends in the system from from arrival to departure) and mean

system utilization (percentage of processors allocated over time) [2, 4, 5, 16, 21, 25, 27,

28, 34, 36, 38, 39,40,41].

In non-contiguous allocation, a job can execute on multiple separate smaller sub-

meshes rather than waiting until a single sub-mesh of the requested size and shape is

available. The main disadvantage of non-contiguous allocation is the increase in message

www.manaraa.com

Chapter 1: Introduction 5

contention inside the network, however dropping the contiguity condition can reduce

processor fragmentation and increase system utilization [2, 4, 5, 16, 21, 25, 27, 28, 34].

Processor fragmentation can be internal fragmentation, which occurs when the

number of processors allocated to a job is more than the number the job needs. This means

that some extra processors are allocated but they are not used. Processor fragmentation can

be external fragmentation, which occurs when there are free processors enough in number

for allocation, but they are not allocated to a job because they are not contiguous or they

do not have the shape that is requested by the allocation request. Fragmentation is the

main limitation for the performance of contiguous allocation schemes that needs to be

minimized.

Contiguous allocation can be a good strategy despite of its drawbacks. This is

because of its ability to minimize the distance of communication paths and avoiding

interference among jobs. The drawbacks of contiguous allocation can be solved using

dynamic allocation, where the sub-mesh of processors allocated to a job can be changed

during job execution in order to achieve efficiency as opposed to static processor

allocation, where a job is allocated a fixed sub-mesh of processors throughout its

execution time [12]. To achieve dynamic allocation, we use job migration, which is

defined as re-allocating jobs from their current position to another sub-mesh to produce

large area of adjacent processors that can accommodate new incoming jobs [21], or the

process of defragmentation which rearranges the nodes themselves.

1.3 Motivation and Contribution

In contiguous processor allocation, if allocation for a job request fails, the job will have to

wait until a suitable free sub-mesh is available. Migration of executing jobs when

www.manaraa.com

Chapter 1: Introduction 6

allocation fails can improve the performance of multicomputer systems in terms of

parameters such as system utilization, job turnaround time, and number of migrations. As

a result of migration, allocation to one or more waiting jobs may become successful.

The previous migration strategies proposed in [21, 31] for 2D mesh multicomputers have

several limitations such as: a large number of migrations is needed under heavy system

loads and the sizes of free sub-meshes that result after migration are small as compared to

the size of the mesh system, where allocating a large incoming jobs degrades system

performance in terms of job turnaround time and system utilization as a result of the small

freed sub-meshes. The study in [21] is an example of migration studies. The mesh system

is subdivided into four quarters, and migration is attempted for the four quarters. The

strategy migrates within the first quarter then it checks if allocation can be successful. If

not then it migrates within the second quarter then checks for allocation. This process is

repeated for the third and fourth quarters. Motivated by the above observations, we

propose in this thesis a new migration process that differs from the earlier migration

strategies in that it is based on considering migration in the system as a whole. This can be

expected to give better performance as compared to the previous migration processes. The

proposed migration process has a larger number of migrations than that in the CODC-FC

strategy as an example, where in this strategy (which CODC-FCQQ is built upon) it uses

four quarters and migrate jobs to the four corners at the same time, it results in more

migrations with a bigger freed sub-mesh [21], and it can serve more jobs per migration

cycle than that in [11], the proposed migration process migrate jobs to the bottom-left

corner one at a time. Also, the proposed strategy modifies the allocation process by

www.manaraa.com

Chapter 1: Introduction 7

switching the orientation of allocation requests when allocation fails for the initial request

orientation.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter two reviews some allocation and

migration strategies that have been proposed for 2D mesh-connected multicomputer

systems. Also, it presents the tool of the study (ProcSimity Simulator) used in this thesis.

Chapter three introduces a new migration process for 2D multicomputer system that

is based on the first fit (FF) allocation strategy and presents the main features of this

scheme. Moreover, it presents extensive simulation experiments that have been carried out

to compare the performance of the proposed migration strategy against the existing

migration strategies.

Chapter four gives a summary of the main results and some directions for future

research.

www.manaraa.com

Chapter 2: Background and Preliminaries 8

Chapter Two

Background and Preliminaries

2-1 Related Work

In this section, a brief description of some allocation and migration strategies that have

been proposed for 2D mesh network is presented [4, 16, 18, 21, 27, 28, 34, 39].

2.1.1 First Fit (FF) and Best Fit (BF) strategies.

These strategies depend on the idea of detecting the base node for a free sub-mesh that is

large enough for the current allocation request, where a base node represents the lower-left

corner of a free sub-mesh using two bit arrays (busy and coverage array). These arrays

represent the status of the processors in terms of idle/busy processors, and the two

strategies scan them from left to right to find base nodes of large enough free submeshes.

The difference between BF and FF is that FF scans the two arrays for the first base node

with enough free processors to allocate and use it, but BF uses the base node that has

enough free processors and has the smallest area [9, 14, 39]. Figure 3 shows an illustration

of the first fit and best fit strategies.

www.manaraa.com

Chapter 2: Background and Preliminaries 9

Figure 3: An allocation using First Fit and Best Fit strategies [14, 39]

2.1.2 Two-dimensional Buddy strategy (2D BUDDY).

It is a first-fit strategy but with the following conditions: the mesh must be a square with a

power of two side lengths and allocation units are square sub-meshes. The 2D Buddy

scheme suffers from severe internal fragmentation because a sub-mesh with dimensions

that have i2 side length is always required. Also, it has significant external fragmentation

[9, 22, 27]. Figure 4 shows an allocation using the 2D Buddy strategy.

Figure 4: An allocation using the 2D Buddy strategy [27]

www.manaraa.com

Chapter 2: Background and Preliminaries 10

2.1.3 Frame sliding strategy (FS).

FS allocation strategy is a first-fit strategy. FS works with 2D meshes of all sizes and

shapes. It allocates a free sub-mesh for the current allocation request by searching for a

sub-mesh (frame) of processors large enough for the allocation request. The search method

is done by searching horizontally from left to right and vertically from bottom to top and

starts with the first free processor found at the bottom-left corner of the 2D mesh. The

action for searching is done by sliding the frame horizontally and vertically by the width

or the length of the allocation request [9, 16, 22]. This process is shown in Figure 5, where

the first frame S1 is not as an appropriate frame for the allocation request because it is not

free. The request is then moved horizontally by the width of the job request, which goes

outside of the mesh. After that, the frame is moved vertically by the length of the job

request, which also goes outside of the mesh. We notice that it ends without finding an

appropriate frame although one exists. As shown by this example, FS strategy is not a

complete recognition strategy.

Figure 5: An allocation using the Frame Sliding strategy [16]

www.manaraa.com

Chapter 2: Background and Preliminaries 11

2.1.4 Adaptive Scan strategy (AS).

AS is a first fit allocation strategy. This strategy is an improvement of the FS strategy and

it is considered as a first-fit recognition complete strategy [18]. Adaptive scan uses a free

sub-mesh detection and scanning operation instead of sliding operation; where the

algorithm scans the mesh by a frame -the same size of the incoming job- and if the frame

is not free then the frame strides to the next point it moves in a single step vertically, and it

moves horizontally based on the allocated sub-mesh. If the job cannot be accommodated

in its original orientation, the orientation of the job is switched and allocation is re-

attempted for the new request shape. In figure 6, the orientation of the job is switched

when allocation of the original job orientation fails.

Figure 6: An allocation using the Adaptive Scan strategy [18]

2.1.5 First-Fit Mesh Bifurcation (FFMB) strategy.

The FFMB strategy tries to reduce the fragmentation problem that the first-fit allocation

strategies suffer from by using different ways for detecting the base node of the allocated

sub-mesh. When a job requests the allocation of a free sub-mesh, FFMB starts the search

process from bottom-left corner or top-left corner of the mesh unlike first-fit strategies,

www.manaraa.com

Chapter 2: Background and Preliminaries 12

which always start the search at the bottom-left corner. Choosing between bottom-left

corner and top-left corner depends on the status of the upper-half and lower-half of the

mesh by starting the search with the less busier half [21]. Figure 7 shows the main

advantage of FFMB, where the search starts from the top-left corner of the mesh instead of

the bottom of the mesh.

Figure 7: An allocation using First-Fit Mesh Bifurcation strategy [21]

2.1.6 Online Dynamic Compaction-Single Corner (ODC-SC) strategy.

The ODC-SC strategy was proposed to reduce the external fragmentation problem that

contiguous processor allocation strategies suffer from. ODC-SC applies job migration on

the running jobs to produce an area of adjacent free processors that is larger than that

before migration in order to serve the current allocation request or future allocation

requests. ODC-SC does not apply job migration unless the allocation strategy failed to

serve the current allocation request in spite of the presence of a sufficient number of free

www.manaraa.com

Chapter 2: Background and Preliminaries 13

processers because these processors are not contiguous. After job migration, the allocation

strategy is used again to search for a free sub-mesh and allocates it to the current

allocation request if it is found. In ODC-SC, all the running jobs are migrated to the

bottom-left corner of the mesh, which aims to produce large areas of adjacent processors

in right and top of the mesh. In job migration, the left or bottom edge of the sub-mesh are

checked whether they are free or not. Then, shifting the sub-mesh leftwards or downwards

until it reaches the left or bottom of the mesh boundary or the right edges or top edges of

other allocated sub-meshes [21]. In figure 8, the ODC-SC strategy migrates jobs in case of

allocation failure to the bottom left corner in order to free enough sub-mesh for allocation.

Figure 8: An allocation using Online Dynamic Compaction-Single Corner strategy [21]

www.manaraa.com

Chapter 2: Background and Preliminaries 14

- Drawbacks of ODC-SC

It has high number of migrations, and migration is done even if it is not beneficial in

allocation.

2.1.7 Online Dynamic Compaction-Four Corners (ODC-FC) strategy.

In this strategy, the system is divided into four equally parts (four quarters) and processors

are allocated to an allocation request by any processor allocation strategy. The main

advantage for this strategy is that migration occurs in different directions in order to

reduce the number of migrations; this is an advantage over the previous migration strategy

which is ODC-SC that uses migration on the whole mesh to the left bottom corner which

results in a large number of migrations. At the same time, ODC-FC migrates jobs without

any restrictions, which means that the probability of unnecessary migrations (migration

that does not result in successful allocation) is high.

If the number of requested processors is available and the allocation strategy fails to

allocate a job request due to the lack of contiguity, then the job migration process is

applied on the running jobs to migrate them into the four corners of the system according

to the position of each running job, this migration leads to produce a large area of free

adjacent processors in the middle of the system, then the allocation strategy is used again

to allocate a free sub-mesh for the job request [21].

Figure 9 shows the migration scheme for ODC-FC where the jobs are migrated to

the four corners, where each job is migrated to the corner corresponding to its location.

www.manaraa.com

Chapter 2: Background and Preliminaries 15

Figure 9: An allocation using Online Dynamic Compaction-Four Corners strategy [21]

- Drawbacks of ODC-FC

ODC-FC has high number of migrations than CODC-FC and CODC-FCQQ, and

migration is done even if it is not beneficial in allocation.

www.manaraa.com

Chapter 2: Background and Preliminaries 16

2.1.8 Conditional Online Dynamic Compaction-Four Corners (CODC-FC)

strategy.

The CODC-FC strategy is a generalization of the ODC-FC strategy. In this strategy, the

system is divided into four equal parts (four quarters) and processors are allocated to an

allocation request by any processor allocation strategy chosen. If the number of requested

processors is available and the allocation strategy fails to allocate a job request due to the

lack of contiguity, then the job migration process is applied on the running jobs in order to

migrate them to the four corners of the system according to the position of each running

job. This migration aims to produce a large area of free adjacent processors in the middle

of the system, and then the allocation strategy is used again to allocate a free sub-mesh for

the job request [21].

In this strategy, the main advantage is the conditional migration, where the mesh is

divided as in ODC-FC [21, 31] and the same allocation strategy is applied, but the

migration is carried out if it results in successful allocation, this reduces the number of

migrations and as a result the turnaround time is also reduced as opposed to the previous

algorithms with migration. This is an advantage in comparison to ODC-SC and ODC-FC.

The disadvantage of CODC-FC is that it applies migration to all quarters at the same

time even if single quarter migration can be enough which mean higher number of

migrations. Figures 10 and 11 show the outline of CODC-FC allocation and de-allocation

strategies respectively. In figure 12, the job with size 3x3 failed to be allocated, so

migration is carried out for the four quarters then it is allocated in the freed sub-mesh.

www.manaraa.com

Chapter 2: Background and Preliminaries 17

Input : Dimensions of the required sub-mesh of the job to be allocated

Step1: Search (phase 1)

Search for a free sub-mesh using (FF) strategy.

 IF a free sub-mesh is found, go to Step 5.

ELSE, check weather migration has been carried out since the last de-allocation.

 IF migration has already been carried out, stop.

 ELSE

 IF the number of free processors in the 2D mesh is greater than or equal to the number of

processors needed by the allocation request go to Step 2.

ELSE stop.

Step2: Migration Test

Do the migration using a copy of the data structures (FF on the copy).IF the job migration

can result in successful allocation for the current allocation request, go to Step3. ELSE stop.

Step3: Migration

Apply job migration for all allocated jobs to the four corners according to the location of

each allocated job. THEN, go to Step4.

Step4: search (phase 2) Search for a free sub-mesh using the FF strategy. Go to Step5.

Step5: Allocation

Allocate the free sub-mesh to the job. Update the lists and all data structures. Stop.

Figure 10: Outline of the allocation procedure for CODC-FC strategy [21, 31]

Input: job_id

Step1:

For all processors in the mesh network

 If processor is allocated to the job

 De-allocate it

Step2: Update the lists

Figure 11: Outline of the de-allocation procedure for CODC-FC strategy [21, 31]

www.manaraa.com

Chapter 2: Background and Preliminaries 18

Figure 12: An allocation using Conditional Online Dynamic Compaction-Four Corners

strategy [21, 31]

- Drawbacks of CODC-FC

In CODC-FC migration is done in all quarters even if an enough free submesh to allocate

is freed with fewer migrations.

www.manaraa.com

Chapter 2: Background and Preliminaries 19

2.1.9 Conditional Online Dynamic Compaction-Four Corners Quarter by

Quarter strategies.

The conditional online Dynamic Compaction-Four Corners Quarter by Quarter is based on

ODC-FC except that it applies migration only when it can result in successful allocation

for the current allocation request. In this migration strategy, we use the FF strategy as an

allocation strategy because of its simplicity and performance is close to that of the BF

strategy. The same job migration technique used in ODC-FC has been used in this

strategy, but an improvement has been made to this strategy to improve the performance

of ODC-FC in terms of average turnaround time and mean system utilization. The aim of

this improvement is to reduce the cost of job migration.

In CODC-FC strategy, we keep all jobs that are allocated to the 2D mesh in four

ordered lists; each list contains the jobs that belong to the same quarter, which means that

the first list contains all jobs that are allocated to the first quarter. The second list contains

all jobs that are allocated to the second quarter, and so on. After a job completes its

execution and deallocation is carried out, the job is removed from the list that it belongs

to. These lists are used to simplify the migration process [31].

In this scheme, the migration process is similar as CODC-FC but migration takes

place on quarter-by-quarter bases. When the current allocation request fails, migration

within the first quarter is carried out and if this does not lead to successful allocation, we

cancel the operation and return the mesh to the previous state. Then we try to migrate

within the second quarter, and so on. If migration within a quarter leads to successful

allocation, we keep the migration state, this process of migration is called virtual

migration; where the migration is applied on a copy of the busy array that contains the

www.manaraa.com

Chapter 2: Background and Preliminaries 20

location of the current allocated jobs, the virtual migration minimizes the number of

migration which results in reduced turnaround time.

The accumulative migration process means that in the worst case scenario CODC-

FCQQ will give the same results as CODC-FC. Using virtual migration may cause an

increase in time of service but it is balanced in or even decreased as the cumulative

migration have a better chance in giving a better result than CODC-FC [31].

Figure 13 shows the process of migration to the four corners on quarter-by-quarter

basis, where the migration process starts in the first corner and then the second corner, and

so on.

Figure 13: An allocation and migration using Online Dynamic Compaction-Four Corners

strategy Quarter By Quarter [31]

www.manaraa.com

Chapter 2: Background and Preliminaries 21

- Drawbacks of CODC-FCQQ

In CODC-FCQQ migration can fail even if there is enough free nodes because of the

shape of the incoming job don’t match the shape of the freed sub-mesh.

2.2 The Simulation Tool (ProcSimity Simulator)

This section briefly describes the ProcSimity simulation tool [25, 32]. ProcSimity is a

simulation tool that has been built as a research tool for processor allocation and job

scheduling in multicomputer systems [32, 10]. ProcSimity was developed at the

University of Oregon [32], and has been supported by Oregon Advanced Computing

Institute (OACIS) and National Science Foundation (NSF) [10]. The tool was written in

the C programming language and has been extensively used in the simulation of processor

allocation and job scheduling in mesh-connected multicomputer systems [8, 10, 29]. This

is because it is an open-source tool that includes detailed simulations of important

operations regarding multicomputer networks [10, 32].

The general purpose of the ProcSimity is to provide a suitable environment for

performance analysis of processor allocation and scheduling for different algorithms. In

particular, ProcSimity’s main job is to examine some of the processor allocation problems,

as an example of fragmentation and communication overhead problems [2, 5, 7, 8, 10, 29].

ProcSimity has an architecture that consists of a network of processors interconnected

through message routers at each node. Adjacent nodes are connected by two-way

communication links, and communications such as messages may be passed using by

either store-and-forward or wormhole switching. ProcSimity supports the mesh and k-ary

n-cube interconnection topologies with dimension-ordered routing [10, 32].The

www.manaraa.com

Chapter 2: Background and Preliminaries 22

ProcSimity simulator has a number of preset algorithms regarding allocation and

scheduling. Moreover, a new algorithm can be integrated into ProcSimity [10, 32].

2.3 Summary

In table 2.1 a comparison is illustrating the main problems of the allocation and migration

strategies mentioned in the previous sections.

Table 2.1 Drawbacks of some allocation and migration strategies

strategy Main advantage Main drawback

First fit Simplicity External fragmentation

Best fit Good performance External fragmentation

Two-dimensional Buddy Less time than FF internal fragmentation

Frame sliding Faster search External fragmentation

Adaptive scan Better performance than

FS

External fragmentation

First-Fit Mesh Bifurcation Less fragmentation than

FF

External fragmentation

Online Dynamic Compaction-Single Corner Improves utilization Non beneficial migration

Online Dynamic Compaction-Four Corners Better performance than

ODC-SC

Non beneficial migration

Conditional Online Dynamic Compaction-

Four Corners

Better performance than

ODC-FC

Unnecessary migration

Conditional Online Dynamic Compaction-

Four Corners Quarter by Quarter

Better performance than

CODC-FC

External fragmentation

because of the shape of

the incoming job

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 23

Chapter Three

Conditional Online Dynamic Compaction - Full Mesh

3.1 Introduction

In most contiguous processor allocation strategies, the main drawback is the fragmentation

problem, especially external fragmentation. This happens when an allocation request

cannot be served in spite of the presence of enough free processes for the job request, but

because of the contiguity condition the available non-contiguous processors cannot be

utilized, also the shape of the incoming job doesn’t match the shape of the free submesh

[21].

To solve this problem, we can rearrange the allocated processors in the mesh to free

enough adjacent processors to be able to allocate the requested processors. This process is

referred to as the migration process. The main drawback in migration is the cost of

migration because jobs must halt execution until the migration process ends and then re-

execute the processes either from the previous state, which means that the previous state

should be saved. This results in an extra cost.

3.2 Online Dynamic Compaction-Four Corners strategies

The most recent migration strategies depend on using First Fit as an allocation strategy

then use migration if allocation fails and there are enough free processors to allocate

because of its simplicity and performance is close to that of the Best Fit strategy, so

migration is applied on the running jobs to free a sub-mesh to be allocated to an incoming

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 24

job request. The most recent migration strategies divide the mesh into four quarters of the

same size and migrates jobs within the quarter in a specific direction. As mentioned in

sections 2.1.7, 2.1.8, and 2.1.9 in chapter 2.

3.2.1 Conditional Online Dynamic Compaction – Full mesh strategy

This strategy is based on the ODC strategies; ODC-SC and CODC-FCQQ strategies. This

strategy uses the full mesh as ODC-SC to migrate jobs to the left bottom corner, it uses

First Fit as an allocation strategy because of its simplicity and performance and also it uses

the virtual migration process that is presented in CODC-FCQQ.

The performance of this strategy can be improved over CODC-FCQQ by switching

the orientation of any allocation request that cannot be allocated in the requested

orientation. This step has been used in the algorithm in case that the migration was

unsuccessful in allocation, then the algorithm rotates the allocation request and then

checks if allocation is successful; it almost like the game of Tetris, which in most cases

works very well. This causes a big reduction in turnaround time and the number of

migrations that is maximized because of the full mesh migration.

Also, the ordering process can be used to improve the performance of the allocation

algorithm, which is the process of updating the busy array that contains the current

location of the currently being serviced jobs; every time we migrate the job in order to

reduce the gaps between the migrated jobs; the gaps are caused by the process of

migration; as the current migration for any job is done in relative to the old location of the

previous job, this process reduces the gaps and which in turn helps in the next migration,

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 25

while the other algorithms update busy array when the algorithm finishes migration on the

quarter or the full mesh system.

3.3 Performance Evaluation

In this section, the simulation results will be stated as an evaluation of the performance of

the algorithm then it is compared to that of the most recent algorithms, CODC-FC and

CODC-FCQQ. Since the performance of CODC-FC and CODC-FCQQ is better than that

of ODC-FC and ODC-SC in terms of mean system utilization and job turnaround time,

only these two strategies will be used in the comparison.

3.3.1 Simulation Results

Extensive simulations have been done in the ProcSimity simulation tool (which is written

in C language and often used to simulate parallel systems) to compare the proposed

algorithm against the selected algorithms; which are CODC-FC and CODC-FCQQ, all

algorithms where implemented in this tool and tested.

The mesh used is a 2D mesh with height (H) and width (W). We use the scheduling

strategy First Come First Served (FCFS) because of its fairness, an exponential

distribution has been used to generate inter-arrival time using a unique time unit and also

is used to generate the jobs execution times with a mean of one time unit. The time unit

used in simulations is specific for the simulator and not a normal time unit such as;

seconds, minutes, and hours. The time unit is measured by floating point values, which

means that the values generated by the simulator are real numbers. The job distribution is

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 26

uniformly distributed ranging from 1 to the mesh width and height and this controls the

size of incoming jobs.

Table 3.1 shows an example of one of the input files used in the evaluation experiments

using a 16x16 mesh, values may vary to simulate different situations and traffic

conditions.

Table 3.1: The System Parameters Used in the Simulation Experiments.

Simulator Parameter Values

Dimensions of the Mesh Architecture 16×16

Allocation Strategy FF

Scheduling Strategy FCFS

Job Size Distribution Uniform: Job widths and heights are uniformly

distributed over the range from 1 to the mesh

side lengths.

Execution Time Distribution Exponential with a mean of one time unit.

Inter-arrival Time Exponential with different values for the mean.

The values are determined through

experimentation with the simulator, ranged from

lower values to higher values.

Number of Runs The number of runs should be enough so that

the confidence level is 95% that relative errors

are below 5% of the means. The number of runs

ranged from dozens to thousands.

Number of Jobs per Run 1000

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 27

The last two inputs in the file above is the number of jobs and the number of runs and

these two parameters are used to determine the confidence level of the simulation, the

simulation experiments have been conducted with a confidence level of 95% with a 5%

relative error below the means of the simulation results. There are three evaluation metrics

which shows the performance of the algorithms considered in this thesis. These are job

turnaround time – which is the time that a job spends in the system (mesh) from arrival to

departure-, utilization – which is the percentage of utilized processors over time, and

number of migrations- which is the number of movements that the jobs takes in the

process of migration-.

The main variable that is independent and imperative in the simulation process is the

system load, which is the inverse of the mean inter-arrival time of the jobs. The system

load is the value that determines the degree of load on the system which could be low,

medium or heavy, this rang is crucial to test the best values for the evaluation metrics

tested. The figures listed below show a comparison between the considered algorithms and

composed of a system load on x-axis and the metric of performance on the y-axis.

Turnaround Time

In Figures 14, 15 and 16, the job turnaround time for multiple algorithms against system

load shows how fast the algorithm processes a job. The main algorithm in this thesis

(CODC-FM) and the one (CODC-FCQQ) that is compared with it uses FF as an allocation

strategy and use virtual migration. The results show that the proposed algorithm CODC-FM

is superior to all of the algorithms that are included in the figure. Moreover, the algorithm

CODC-FCQQ is almost identical in performance to the previous algorithm CODC-FC and

they are superior to the previous algorithms whether they use migration or not, while the

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 28

proposed algorithm CODC-FM performs better than the previous algorithms considered.

When comparing CODC-FCQQ with our proposed algorithm CODC-FM In table 3.2, the

table demonstrates the values included in the figures below; in which the lower value is

considered as an advantage, so we see a value of (25.448994) at (2.1) system load of the

CODC-FM algorithm against (57.946968) for the closest algorithm which is CODC-FCQQ

at the same system load for an 8X8 mesh In figure 14, also a value of (26.65143) against

(42.097273) in favor of CODC-FM for a 22X16 mesh In figure 15, and a value of

(13.42729) against (37.244583) in favor of CODC-FM for a 32X32 mesh In figure 16. The

formula used to calculate the values in the table is listed below.

Formula 1 : response time = response time + (average response time /no. of runs)

Table 3.2: average turnaround time for the algorithms considered in this thesis

compared to other algorithms.

System load ODC-FC FF CODC-FCQQ CODC-FM

0.1 1.079001 1.030232 1.03208 1.023223

0.3 1.272198 1.11385 1.126135 1.099058

0.5 1.518925 1.240075 1.265202 1.211681

0.7 1.830567 1.430026 1.461612 1.366162

0.9 2.239858 1.733065 1.744113 1.5733

1.1 2.807414 2.24741 2.17395 1.862186

1.3 3.686752 3.307573 2.908342 2.276927

1.5 5.406547 6.212885 4.474857 2.934021

1.7 9.776795 15.678181 8.702282 4.152281

1.9 20.927063 35.124291 19.760804 6.941841

2.1 38.423574 56.880197 37.244583 13.42729

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 29

Figure 14: Average Turnaround Time vs System Load for a 8X8 mesh

Figure 15: Average Turnaround Time vs System Load for a 22X16 mesh

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 30

Figure 16: Average Turnaround Time vs System Load for a 32X32 mesh

Utilization

In figures 17, 18 and 19, utilization for multiple algorithms against system load shows how

the algorithm utilizes processors. When we compare our proposed algorithm CODC-FM

against the previous algorithms (CODC-FCQQ as an example), CODC-FM achieves higher

utilization. CODC-FCQQ is better in performance comparing to the previous algorithms

because of cumulative migration. This causes fewer migrations which in part maximizes

utilization since utilization depends on job service time and the cost of migration. The

reason that makes CODC-FM performs better in utilization than CODC-FCQQ is the job

orientation switch which reduces job migration since in some cases allocation is done

without migration. In figures 17, 18, and 19, we compare the system utilization for different

algorithms with different mesh sizes. As an example, when comparing CODC-FCQQ with

CODC-FM- the data in table 3.3, which shows some values included in the charts below;

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 31

where the higher value is considered as an advantage, therefore we see a value of

(0.609426) for CODC-FM against (0.538851) for CODC-FCQQ in favor of CODC-FM for

an 8X8 mesh with a (2.1) system load In figure 17, also a value of (0.532494) against

(0.501032) in favor of CODC-FM for a 22X16 mesh In figure 18, and a value of

(0.538343) against (0.488739) in favor of CODC-FM for a 32X32 mesh In figure 19. The

formula used to calculate the values in the table is listed below.

Formula 2: system utilization = system utilization + (run system utilization / no. of runs)

Table 3.3: average system utilization for the algorithms considered in this thesis

compared to other algorithms.

System load ODC-FC FF CODC-FC CODC-FCQQ CODC-FM

0.1 0.031767 0.031767 0.031767 0.031767 0.031767

0.3 0.095277 0.095277 0.095277 0.095277 0.095277

0.5 0.158745 0.158743 0.158745 0.158745 0.162634

0.7 0.222145 0.222138 0.222145 0.222145 0.222159

0.9 0.28542 0.285394 0.28542 0.28542 0.285481

1.1 0.348447 0.348352 0.348445 0.348445 0.348647

1.3 0.410932 0.410616 0.410934 0.410936 0.411542

1.5 0.471209 0.468314 0.471202 0.47122 0.47387

1.7 0.517484 0.501934 0.517441 0.517546 0.534107

1.9 0.535067 0.509731 0.535025 0.535207 0.583855

2.1 0.538674 0.511529 0.538629 0.538851 0.609426

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 32

Figure 17: Mean System Utilization vs System Load for a 8X8 mesh

Figure 18: Mean System Utilization vs System Load for a 22X16 mesh

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 33

Figure 19: Mean System Utilization vs System Load for a 32X32 mesh

Migration

Figures 20, 21 and 22, Show the average number of migration for multiple algorithms

against system load. When we compare against the algorithm in this thesis we see that

CODC-FM is only superior to ODC-FC. The reason that CODC-FM has higher in

number of migrations is the use of the full mesh system as a migration area, causing higher

migrations which in part minimize utilization since utilization depends on job turnaround

time and the cost of migration. But since migration is carried out in case of failure of

allocation the effect is negligible, also the algorithm in this thesis has a step that should be

taken before the migration process which is the orientation switch that may substitute the

migration process if it is successful. Also the use of the full mesh in migration can produce

a large free sub-mesh that can accommodate more jobs to be serviced, and the ordering

process helps with the size of the freed sub-mesh.

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 34

 In Figures 20, 21, and 22, we compare the number of migrations for the different

algorithms. When comparing CODC-FCQQ with CODC-FM as an example, table 3.5

shows some values included in the charts below; the higher value is considered as a

disadvantage- we see a value of (111.45) for CODC-FM against a value of (75.21) for

CODC-FCQQ for an 8X8 mesh as with a (2.1) system load In figure 20, also a value of

(129.3225) against (102.335) in favor of CODC-FCQQ for a 22X16 mesh In figure 21,

and a value of (169.56) against (114.27) in favor of CODC-FCQQ for a 32X32 mesh In

figure 22. The formula used to calculate the values in the table is listed below.

Formula 3: migration counter = migration counter + migration counter per run / no. of runs

Table 3.4: average number of migrations for the algorithms considered in this thesis

compared to other algorithms.

System load ODC-FC FF CODC-FC CODC-FCQQ CODC-FM

0.1 9.1125 0 0.5025 0.5025 0.7475

0.3 33.3225 0 3.81 3.7675 5.4225

0.5 63.4775 0 9.375 9.2725 12.7375

0.7 100.035 0 16.95 16.615 22.655

0.9 141.725 0 25.835 25.1925 33.3125

1.1 190.5925 0 36.6575 35.49 45.8275

1.3 244.19 0 48.6225 47.095 59.6225

1.5 300.2875 0 61.405 59.405 74.805

1.7 347.345 0 72.5175 70.0175 90.615

1.9 366.17 0 76.865 74.1925 104.27

2.1 370.2225 0 77.905 75.21 111.45

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 35

Figure 20: Average Number of Migrations vs System Load for a 8X8 mesh

Figure 21: Average Number of Migrations vs System Load for a 22X16 mesh

www.manaraa.com

Chapter 3: Conditional Online Dynamic Compaction - Full Mesh 36

Figure 22: Average Number of Migrations vs System Load for a 32X32 mesh

3.4 Conclusions

While different migration strategies improve the performance of most allocation strategies

in different ways, the suggested algorithm Conditional Online Dynamic Compaction-Full

Mesh with switch (CODC-FM for short), is an improvement of the previous algorithms as

shown by the simulation results, the performance of CODC-FM is better in job turnaround

time and mean system utilization, although it has a higher number of migrations than most

of the previous algorithms, CODC-FM balance the effect of the high number of migrations

with lower job turnaround time since it reduces service time a great deal.

The most promising update in the algorithm which improved the performance is job

orientation switch. CODC-FM has the best performance and the best sides of further

improvement such as the migration area.

www.manaraa.com

Chapter 4: Conclusions and Future Work 37

Chapter 4

Conclusions and Future Work

4.1 Summary of the Results

The main purpose of this thesis is to come up with a new and improved migration strategy

for 2D mesh-connected multicomputer systems, below are some areas of improvement

that the new strategy accomplished.

 The improvements of the previous algorithms shows that improvement can be

done in some areas, this is the motivation for a new migrations strategy that has

higher performance than the previous ones. Most migration strategies have a close

in job turnaround time. In addition, utilization of processors is an important issue.

The new migration strategy CODC-FM depends on using the full mesh as a

migration area and the most important criteria is that in case of migration failure to

allocate a job it switch the orientation (i.e., rotation) of the allocation request,

which is expected to improve the system performance.

 The simulation has shown that the performance of CODC-FM is better than that of

the previous migration strategies. The proposed algorithm is better than that of the

previous algorithms with up to 177% improvement in terms of job turnaround time

in high system loads and with an average of 54% overall system loads. Also, the

results show an increase in system utilization up to 9.2% in high system loads with

an average of 4.6% overall system loads. Moreover, the results show that an

www.manaraa.com

Chapter 4: Conclusions and Future Work 38

increase in the number of migrations by 30% overall system loads which have little

effect on the overall performance of the new algorithm because of the

improvement in the different aspects of the algorithm.

4.2 Directions for the Future Work

Many areas of this research work are open for improvement, where the problems that can

be investigated are mentioned below.

 It would be interesting to change the way of dividing the mesh system and then

evaluate the performance of the allocation strategies in such way.

 The job orientation (i.e., job rotation) is done after migration fails to allocate.

Therefore, we can change the first fit algorithm to use job orientation within the

algorithm or after the initial allocation fails to allocate the job.

www.manaraa.com

Chapter 4: Conclusions and Future Work 39

 الملخص

جديدة لترحيل المهام اثناء تنفيذها في النظام بهدف التحسين في تم في هذه الرسالة اقتراح خوارزمية

يتم التركيز في . مقارنة مع الخوارزميات القديمة المستخدمة لترحيل المهام اثناء التنفيذ، أداء النظام

 ،شمل الشبكة كاملة مما يزيد من عمليات الترحيلتعلى توسيع منطقة البحث لالخوارزمية المقترحة

الترحيل يتم تنفيذ السابقة. وأيضاً، الطرقفي منهان ذلك أن تصبح المنطقة المفرغة أكبر الهدف مو

هذا يعني تجنب العمليات الغير مفيدة. بالإضافة الى ذلك، في و ،فقط عندما ينتج عنه تخصيص ناجح

 ،حال فشل التخصيص للطلب يتم تبديل ابعاد هذا الطلب، وذلك لزيادة احتمل التخصيص الناجح

من مساحة البحث عن طريق التقليل وهناك ايضاً خاصية أخرى مهمة لطريقة الترحيل المقترحة وهي

ايقاف عملية البحث عند ايجاد شبكة جزئية كبيرة بما يكفي للتخصيص الناجح مما يجعل الترحيل يتم

 .)تحديث عملية الترحيل بشكل تراكمي بعد كل مهمة(تراكمي على اساس

الخوارزمية الجديده المقترحة تحسن من الأداء من ناحية معدل هذه الرسالة الى انتشير النتائج في

كما تحسن من استغلال النظام مقارنة ،(بشكل كبيرturnaround time) المكوث في النظاموقت

 بالخوارزميات السابقة.

ن الترحيل يتم عدد مرات الترحيل لأتعاني الخوارزمية الجديدة من مشكلة واحدة فقط وهي زيادة

في الشبكة كاملة وجميعها ترحل لنفس الإتجاه وهو الزاوية البرامج قيد التنفيذتنفيذه على جميع

على ، هذه العملية تتسبب بزيادة عدد مرات الحركة التي تنفذ على الوظيفةللشبكة اليسرى السفليه

 .على حده كل امج قيد التنفيذالبرالرغم من أن الترحيل يتم على

www.manaraa.com

References 40

References

1. Ababneh, I. (2001), Job scheduling and Contiguous Processor Allocation for

Three Dimensional Mesh Multicomputers, AMSE advances in Modeling& Analysis, 6(4),

43-58.

2. Ababneh, I. (2006), An Efficient Free-list submesh Allocation Scheme for Two

Dimensional Mesh-connected Multicomputers, Journal of Systems and software, 79(8),

1168-1179.

3. Ababneh, I. (2008), Availability-Based Noncontiguous Processor Allocation

Policies for 2D Mesh-connected Multicomputers, Journal of systems and software, 81(7),

1081-1092.

4. Ababneh, I. (2009), On submesh Allocation for 2D Mesh Multicomputers Using

the Free List Approach: Global Placement schemes, Journal of performance Evaluation,

6(2), 105-120.

5. Ababneh, I. and Fraij F. (2001), Folding Contiguous and Non-contiguous

Space Sharing for Parallel computers, Mu'tah Lil-Buhuth wad-Dirasat Natural and

Applied Sciences Series, 16(3), 9-34.

www.manaraa.com

References 41

6. Athas, W.C. and Seitz, C.L, (1988), Multicomputers: Message-Passing Concurrent

Computers, IEEE Computer, 21(8), 9-24.

7. Bani Mohammad, S., Ouald-Khaoua, M., Ababneh, I., and Machenzie, L. (2006),

Noncontiguous Processor Allocation Strategy for 2D Mesh Connected Multicomputers

Based on Sub-Meshes Available for Allocation. Proceedings of the 12th International

conference on Parallel and Distributed Systems (ICPADS'06), Minneapolis, Minnesota,

USA, IEEE Com purer Society Press,41-48.

8. Bani Mohammad, S., Ould-Khaoua, M. and Ababneh, I. (2007), A New Processor

Allocation strategy with a High Degree of Contiguity in Mesh-Connected Multicomputers,

Journal of Simulation Modeling, Practice and Theory (SIMPRA), Elsevier Science, 15(4),

465-480.

9. Bani-Mohammad, S. (2008), Efficient Processor Allocation Strategies for Mesh-

Connected Multicomputers. Ph.D. Thesis, Department of Computing science, University

of Glasgow.

10. Bani-Mohammad, S., Ould-Khaoua, M., and Ababneh, I. (2007), An Efficient

Non- Contiguous Processor Allocation Strategy for 2D Mesh Connected Multicomputers,

Journal of information Sciences. 177(14), 2867-2883.

www.manaraa.com

References 42

11. Blumrich, M., Chen, D., Coteus, P., Gara, A., Giampapa, M., Heidelberger, P.,

Singh, S., Steinmacher-Burow, B., Takken, T., and Vranas, P. (2003), Design and

Analysis of the Blue Gene/L Torus Interconnection Network. IBM Research Report

RC23025, IBM Research Division, Thomas J. Watson Research Center.

12. C esar A. F. De Rose, Hans-Ulrich Heiss, and Philippe A. O. Navaux (2007),

Distributed Processor Allocation in Multicomputers, Journal of Parallel Computing. 33(3),

1145-158

13. Chang, C.Y. and Mohapatra, P. (1998), Performance Improvement of Allocation

schemes for Mesh-connected Computers, Journal of Parallel and Distributed Computing,

52(1) 40-68.

14. Chiu, G-M., and Chen, S-K. (1999), An Efficient Submesh Allocation Scheme for

Two Dimensional Meshes with Little overhead, IEEE Transactions on Parallel and

Distributed Systems, 10(5), 471-486.

15. Choo, H., Yoo, S-M., and Youn. H.Y. (2000), Processor Scheduling and

Allocation for 3D Torus Multicomputer Systems, IEEE Transactions on Parallel and

Distributed Systems, 11(5), 475-484.

www.manaraa.com

References 43

16. Chuang. P.-J., and Tzeng, N-F. (1991), An Efficient Submesh Allocation Strategy

for Mesh Computer Systems, Proc, 1991 Int'l Conf. Distributed Computer systems, 256-

263.

17. Cray, (2004), Cray XT3 datasheet.

http://www.cray.com/downloads/Cray_XT3_Datasheet.pdf, last seen (1/10/2015)

18. Ding, J., and Bhuyan, L.-N. (1993), An Adaptive Submesh Allocation Strategy for

Two Dimensional Mesh Connected Systems, Proceedings of the 1993 International

Conference on Parallel Processing, 193-200.

19. Foster, I. (1995), Designing and Building Parallel Programs, Concepts and Tools

for Parallel Software Engineering, Addison-Wesley.

20. Gabrani, G., and Mulkar, T. (2005), A Quad-Tree Based Algorithm for Processor

Allocation in 2D Mesh-Connected Multicomputers, Journal of Computer Standards

Interfaces, 27(2), 133-147.

21. Goh L.-K., and Veeravalli, B. (2008), Design Performance Evaluation of combined

and First-Fit Task Allocation and Migration strategies in Mesh Multiprocessor Systems,

Journal of Parallel Computing, 34(9), 508-520.

http://www.cray.com/downloads/Cray_XT3_Datasheet.pdf

www.manaraa.com

References 44

22. Hamed, M. (2010), Evaluation of Common Scheduling and Contiguous Allocation

strategies for Different Parallel Job Size Request Shapes. M.Sc. Thesis, Faculty of

Graduate Studies, Jordan University of Science and Technology.(Unpublished)

23. Intel Corporation, (1991), Paragon XPS Product Overview.

http://wenku.baidu.com/view/2c07f0264b35eefdc8d333dc.html, last seen (1/10/2015)

24. Kim, G., and Yoon, H. (1998), On Submesh Allocation for Mesh Multicomputers:

A Best Fit Allocation and a Virtual Submesh Allocation for Faulty Meshes, IEEE

Transactions on Parallel and Distributed Systems, 9(2), 175-185.

25. Kumar V., Grama A., Gupta A., and Karypis G., Introduction to Parallel

Computing, Person education Limited,2
nd

 edition, ISBN 0-201-64865-2.

26. Kumar. V, Grama, A., Gupta, A., and Karypis, G. (2003), Introduction to Parallel

Computing, The Benyamin/Cummings publishing Company Inc., Redwood City,

California.

27. Li, K. and Cheng, K.-H (1991), A Two-Dimensional Buddy System for Dynamic

Resource Allocation in a Partition able Mesh connected system, Journal of Parallel and

Distributed Computing, 12(1), 79-83.

http://wenku.baidu.com/view/2c07f0264b35eefdc8d333dc.html

www.manaraa.com

References 45

28. Liu, T., Huang, W.-K., Lombardi, F. and Bhuyan, L. N. (1995), A Submesh

Allocation Scheme for Mesh-connected Multiprocessor systems, Proceedings of the

International Conference Parallel Processing II, 159-163.

29. Lo. V., Windisch, K., Liu, W., and Nitzberg, B., (1997), Noncontiguous Processor

Allocation Algorithms for Mesh-connected Multicomputers, IEEE Transactions on

Parallel and Distributed Systems, 8(7), 712-126.

30. M. Morris Mano, Computer System Architecture, Person Education Limited, 3
rd

edition, ISBN 0-13-175563-3.

31. Olimat, M. (2012), Job migration in contiguous processor allocation for two-

dimensional multicomputer, M.Sc Thesis, department of computer science, Jordan

University of science and technology.(Unpublished)

32. ProcSimity V4.3 User's Manual, (1996), University of Oregon.

33. Quinn, J. (1994), Parallel computing, Theory and practice, McGraw-Hill.

34. Seo, K.-H., and Kim, S.-C (2003), Improving System Performance in Contiguous

Processor Allocation for Mesh-Connected Parallel systems, The Journal of Systems and

software, 67(1), 45-54.

www.manaraa.com

References 46

35. Sharma, D. and Pradhan, D.K., (1998), Job Scheduling in Multicomputers, IEEE

Transactions on Parallel and Distributed Systems, 9(1), 57-70.

36. Sharma, D., and Pradhan, D.k., (1996), Submesh Allocation in Mesh-

Multicomputers Using Busy-List: A Best-Fit Approach with Complete Recognition

Capability, Journal of Parallel and Distributed Computing, 36(2), 106-118.

37. Windisch K., J. V. Miller J.V., and Lo V. (1995), ProcSimity: an experimental

tool for processor allocation and scheduling in highly parallel systems, Proceedings of the

5th Symposium on the Frontiers of Massively Parallel Computation (Frontiers'95),

Washington, DC, USA, IEEE Computer Society Press, pp. 414-421.

38. Yoo, B.S. and Das, C.-R. (2002), A Fast and Efficient Processor Allocation

scheme for Mesh-connected Multicomputers, IEEE Transactions on Parallel & Distributed

Systems, 51(1), 40-60.

39. Zhu, Y. (1992), Efficient Processor Allocation Strategies for Mesh-Connected

Parallel Computers, Journal of Parallel and Distributed Computing, 16(4), 328-337.

40. Mehdi Modarressi, Marjan Asadinia, Hamid Sarbazi-Azad (2013), Using task

migration to improve non-contiguous processor allocation in NoC-based CMPs, Journal of

Systems Architecture 59 (2013) 468–481.

www.manaraa.com

References 47

41. Jim Ng, Xiaohang Wang, Amit Kumar Singhz, Terrence Mak (2015), DeFrag:

Defragmentation for Efficient Runtime Resource Allocation in NoC-based Many-core

Systems, Department of Computer Science and Engineering, The Chinese University of

Hong Kong, Shatin, N.T., Hong Kong, Guangzhou Institute of Advanced Technology,

CAS, China, Department of Computer Science, University of York, UK., Shenzhen

Institute of Advanced Technology, CAS, China.

